[1]奥婷婷,姜祯珍,张 熙.布托啡诺调节FOXO3-FOXM1信号轴对骨肉瘤细胞生物活性和化疗药物耐药性的实验研究[J].现代检验医学杂志,2024,39(06):37-42+66.[doi:10.3969/j.issn.1671-7414.2024.06.006]
 AO Tingting,JIANG Zhenzhen,ZHANG Xi.Experimental Studies Butorphanol on the Biological Activity and Chemotherapy Drug Resistance of Osteosarcoma Cells by Regulating the FOXO3-FOXM1 Signal Axis[J].Journal of Modern Laboratory Medicine,2024,39(06):37-42+66.[doi:10.3969/j.issn.1671-7414.2024.06.006]
点击复制

布托啡诺调节FOXO3-FOXM1信号轴对骨肉瘤细胞生物活性和化疗药物耐药性的实验研究()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第39卷
期数:
2024年06期
页码:
37-42+66
栏目:
论著
出版日期:
2024-11-15

文章信息/Info

Title:
Experimental Studies Butorphanol on the Biological Activity and Chemotherapy Drug Resistance of Osteosarcoma Cells by Regulating the FOXO3-FOXM1 Signal Axis
文章编号:
1671-7414(2024)06-037-07
作者:
奥婷婷姜祯珍张 熙
(十堰市人民医院麻醉科,湖北十堰442000)
Author(s):
AO TingtingJIANG ZhenzhenZHANG Xi
(Department of Anesthesiology, Shiyan People’s Hospital, Hubei Shiyan 442000, China)
关键词:
布托啡诺叉头框蛋白O3- 叉头框蛋白M1 信号通路骨肉瘤顺铂
分类号:
R738.1;R730.43
DOI:
10.3969/j.issn.1671-7414.2024.06.006
文献标志码:
A
摘要:
目的 探究布托啡诺(BUT)调节叉头框蛋白O3(FOXO3)- 叉头框蛋白M1(FOXM1)信号轴对骨肉瘤细胞生物活性和化疗药物耐药性的影响。方法 将2.0μmol/L 顺铂(CDDP)处理的CDDP 耐药MG-63 细胞(MG-63/CDDP)分为对照组(MG-63/CDDP 细胞用含0.05g/dl DMSO 培养液处理)、BUT 组(40 μg/ml BUT 处理MG-63/CDDP 细胞)、JY-2 组(用100μmol/L FOXO3-FOXM1 抑制剂JY-2 处理MG-63/CDDP 细胞)和BUT+JY-2 组(用40μg/ml BUT 以及100μmol/L JY-2 处理MG-63/CDDP 细胞)。CCK8 法检测MG-63/CDDP 细胞活性;流式细胞术检测MG-63/CDDP 细胞凋亡情况;Transwell 法检测MG-63/CDDP 细胞迁移、侵袭情况;Western blot 检测自噬蛋白以及FOXO3-FOXM1 信号通路相关蛋白表达。结果 与MG-63 细胞相比,MG-63/CDDP 细胞IC50 增加(20.56±2.52μmol/L vs 0.97±0.10μmol/L),差异具有统计学意义(q=19.017,P<0.05),筛选出较适浓度1 μmol/L CDDP 用于后续实验。与对照组相比,BUT 组MG-63/CDDP 细胞A 值(0.43±0.05 vs 0.68±0.06),细胞迁移数量(63.63±7.58 个vs114.56±10.57 个) 以及侵袭数量(43.38±4.58 个vs 79.56±8.48 个)、自噬相关蛋白Beclin1(0.31±0.05 vs 0.62±0.07)和微管相关蛋白轻链3(LC3)-II/I 蛋白(0.51±0.08 vs 0.98±0.11) 水平均下降(q=6.763 ~ 9.591,均P<0.05),凋亡率(28.57%±3.14% vs 8.67%±1.46%),FOXO3(0.72±0.08 vs 0.33±0.04),FOXM1(1.22±0.15 vs 0.70±0.08)蛋白水平均上升(q=14.077,10.681,7.493, 均P<0.05), 而JY-2 组MG-63/CDDP 细胞A 值(0.99±0.13 vs0.68±0.06),细胞迁移数量(147.59±15.37 个 vs 114.56±10.57 个) 以及侵袭数量(111.83±12.58 个 vs 79.56±8.48个),Beclin1(0.94±0.11 vs 0.62±0.07),LC3-II/I 蛋白(1.27±0.13 vs 0.98±0.11) 水平均升高(q=4.171 ~ 6.012, 均P<0.05),凋亡率(4.56%±0.86% vs 8.67%±1.46%),FOXO3(0.17±0.01 vs 0.33±0.04),FOXM1(0.46±0.03 vs 0.70±0.08)蛋白水平降低(q=5.941,9.505,6.881,均P<0.05),差异具有统计学意义。JY-2 逆转了BUT 对MG-63/CDDP 细胞活性和化疗耐药性的有利影响。结论 BUT 可能通过激活FOXO3-FOXM1 信号通路调节骨肉瘤细胞的细胞活性和CDDP耐药性。
Abstract:
Objective To investigate the impacts of butorphanol (BUT) on the biological activity and chemotherapy drug resistance of osteosarcoma cells by regulating the forkhead box protein O3 (FOXO3)-forkhead box protein M1 (FOXM1) signal axis. Methods CDDP resistant MG-63 cells (MG-63/CDDP) treated with 2.0 μmol/L cisplatin (CDDP) were separated into control group (MG-63/CDDP cells were treated with 0.05% DMSO medium), BUT group (MG-63/CDDP cells were treated with 40 μg/mL BUT),JY-2 group (MG-63/CDDP cells were treated with 100 μmol/L FOXO3-FOXM1 inhibitor JY-2), and BUT+JY-2 group (MG-63/CDDP cells were treated with 40 μg/ml BUT and 100 μmol/L JY-2). CCK8 method was applied to detect MG-63/CDDP cell activity. Flow cytometry was used to detect apoptosis in MG-63/CDDP cells. The Transwell method was applied to detect the migration and invasion of MG-63/CDDP cells; Western blot was applied to detect the expression of autophagy proteins and proteins related to the FOXO3-FOXM1 signaling pathway. Results Compared with MG-63 cells, the IC50 (20.56±2.52μmol/L vs (0.97±0.10μmol/L) of MG-63/CDDP cells was increased,and the differences was statistically significant (q=19.017, P<0.05), and the optimal concentration of 1 μmol/L CDDP was selected for subsequent experiments. Compared with the control group, the A value (0.43±0.05 vs 0.68±0.06), numbers of cell migration (63.63±7.58 vs 114.56±10.57) and invasion(43.38±4.58 vs 79.56±8.48), and the levels of autophagy-related protein Beclin1(0.31±0.05 vs 0.62±0.07) and microtubule-associated protein light chain 3 (LC3)-II/I proteins (0.51±0.08 vs 0.98±0.11) in the BUT group were reduced (q=6.763 ~ 9.591, all P<0.05), the apoptosis rate(28.57%±3.14% vs 8.67%±1.46%), the levels of FOXO3 (0.72±0.08 vs 0.33±0.04)and FOXM1 (1.22±0.15 vs 0.70±0.08) proteins were increased (q=14.077, 10.681, 7.493, all P<0.05), however, in the JY-2 group, the A value (0.99±0.13 vs 0.68±0.06), numbers of cell migration (147.59 ± 15.37 vs 114.56 ± 10.57) and invasion(111.83±12.58 vs 79.56±8.48), and the levels of Beclin1 (0.94±0.11 vs 0.62±0.07) and LC3- II/I (1.27±0.13 vs 0.98±0.11) proteins in the JY-2 group were increased (q= 4.171 ~ 6.012, all P<0.05), the apoptosis rate (4.56%±0.86% vs 8.67%±1.46%), the levels of FOXO3 (0.17±0.01 vs 0.33±0.04) and FOXM1 (0.46±0.03 vs 0.70±0.08) proteins were reduced (q=5.941, 9.505, 6.881, all P<0.05),and the differences were statistically significant,respectively. JY-2 reversed the beneficial effects of BUT on MG-63/CDDP cell activity and chemotherapy resistance. Conclusion BUT may regulate the cell activity and CDDP resistance of osteosarcoma cells by activating the FOXO3-FOXM1 signaling pathway.

参考文献/References:

[1] 姜富祥, 阿尔宾, 高飞, 等. miR-21 靶向调控PTEN/PI3K/AKT 通路对骨肉瘤细胞增殖?侵袭和凋亡的影响[J]. 现代检验医学杂志, 2022, 37(4): 18-22. JIANG Fuxiang, A Erbin, GAO Fei, et al. Effect of miR-21 targeted regulation of PTEN/PI3K/AKT pathway on the proliferation, invasion and apoptosis of osteosarcoma cells[J]. Journal of Modern Laboratory Medicine, 2022, 37(4): 18-22.
[2] GIACOMINI I, CORTINI M, TINAZZI M, et al. Contribution of mitochondrial activity to doxorubicinresistance in osteosarcoma cells[J]. Cancers(Basel),2023, 15(5): 1370.
[3] NIE Junhua, YANG Tao, LI Hong, et al. Identification of GPC3 mutation and upregulation in a multidrug resistant osteosarcoma and its spheroids as therapeutic target[J]. Journal of Bone Oncology, 2021, 30: 100391.
[4] ZHU Zhihua, ZHANG Wenyu. Efficacy and safety of butorphanol use in patient-controlled analgesia: a meta-analysis[J]. Evidence-based Complementary and Alternative Medicine : 2021, 2021: 5530441.
[5] GUO Peilei, HU Qiangfu, WANG Jiandong, et al. Butorphanol inhibits angiogenesis and migration of hepatocellular carcinoma and regulates MAPK pathway[J]. Journal of Antibiotics, 2022, 75(11): 626-634.
[6] CUI Pengfei, XIN Deqian, LI Fu, et al. Butorphanol suppresses the proliferation and migration of osteosarcoma by promoting the expression of piRNA hsa_piR_006613[J]. Frontiers in Oncology, 2022, 12: 775132.
[7] LI Junnan, CHEN Pengchen, WU Qiushuang, et al. A novel combination treatment of antiADAM17 antibody and erlotinib to overcome acquired drug resistance in non-small cell lung cancer through the FOXO3a/FOXM1 axis[J]. Cellular and Molecular Life Sciences,2022, 79(12): 614.
[8] GHOSH S, SINGH R, VANWINKLE Z M, et al. Microbial metabolite restricts 5-fluorouracil-resistant colonic tumor progression by sensitizing drug transporters via regulation of FOXO3-FOXM1 axis[J]. Theranostics, 2022, 12(12): 5574-5595.
[9] YAO Shang, FAN L Y, LAM E W. The FOXO3-FOXM1 axis: a key cancer drug target and a modulator of cancer drug resistance[J]. Seminars in Cancer Biology, 2018, 50: 77-89.
[10] WANG Baosheng, LI Yuwen, SHEN Yangyang, et al. Butorphanol inhibits the malignant biological behaviors of ovarian cancer cells via down-regulating the expression of TMEFF1[J]. OncoTargets and Therapy,2020, 13: 10973-10981.
[11] CHOI H E, KIM Y, LEE H J, et al. Novel FoxO1 inhibitor, JY-2, ameliorates palmitic acid-induced lipotoxicity and gluconeogenesis in a murine model [J]. European Journal of Pharmacology, 2021, 899: 174011.
[12] MENG Tao, LIN Xiaowen, LI Ximing, et al. Preanesthetic use of Butorphanol for the prevention of emergence agitation in thoracic surgery: A multicenter, randomized controlled trial [J]. Frontiers in Medicine(Lausanne), 2022, 9: 1040168
[13] THIGPEN J C, ODLE B L, HARIRFOROOSH S. Opioids: a review of pharmacokinetics and pharmacodynamics in neonates, infants, and children [J]. European Journal of Drug Metabolism and Pharmacokinetics, 2019, 44(5):591-609.
[14] XIE Nan, MATIGIAN N, VITHANAGE T, et al. Effect of perioperative opioids on cancer-relevant circulating parameters:Mmu opioid receptor and toll-like receptor 4 activation potential,and proteolytic profile[J]. Clinical Cancer Research, 2018, 24(10): 2319-2327.
[15] 杜建国, 张迅, 宗士兰, 等. 布托啡诺通过Hippo/YAP 信号通路影响骨肉瘤MG-63 细胞增殖?迁移和侵袭[J]. 中国肿瘤生物治疗杂志, 2023, 30(9):797-803. DU Jianguo, ZHANG Xun, ZONG Shilan, et al. Butorphanol affects the proliferation,migration and invasion of osteosarcoma MG-63 cells via Hippo/YAP signaling pathway[J]. Chinese Journal of Cancer Biotherapy, 2023, 30(9): 797-803.
[16] MENG Chenyang, ZHAO Zhenqun, BAI Rui, et al. MicroRNA22 regulates autophagy and apoptosis in cisplatin resistance of osteosarcoma[J]. Molecular Medicine Reports, 2020, 22(5): 3911-3921.
[17] 刘伟, 周杨, 边超, 等. miR-495 对食管癌细胞株Eca109 在不同放射剂量和顺铂浓度作用的影响及机制研究[J]. 现代检验医学杂志, 2022, 37(4): 13-17,29. LIU Wei, ZHOU Yang, BIAN Chao, et al. Effect of miR-495 on esophageal cancer cell line Eca109 at different radiation doses and cisplatin concentrations and its mechanism[J]. Journal of Modern Laboratory Medicine, 2022, 37(4): 13-17, 29.
[18] 邹志聪, 温婧, 戴龙彬, 等. 布托啡诺逆转ABCB1蛋白诱导的白血病多重耐药的效果和机制[J]. 中山大学学报(医学版), 2018, 39(4): 526-531. ZOU Zhicong, WEN Jing, DAI Longbin, et al. Efficiency and mechanism sensitizing ABCB1-mediated multidrug resistance of leukemia cells by butorphanol as a synthetic opioid [J]. Journal of Sun Yat-Sen University (Medical Sciences), 2018, 39(4): 526-531.
[19] MARI?O G, NISO-SANTANO M, BAEHRECKE E H,et al. Self-consumption: the interplay of autophagy and apoptosis[J]. Nature Reviews Molecular Cell Biology,2014, 15(2): 81-94.
[20] 曲志梅, 董伟, 刘艳萍. 维奈克拉增强MDS 细胞系对地西他滨化疗敏感性机制的实验研究[J]. 现代检验医学杂志, 2023, 38(3): 53-57, 78. QU Zhimei, DONG Wei, LIU Yanping. Experimental study on the mechanism of venetoclax enhancing the sensitivity of MDS cell lines to decitabine chemotherapy[J]. Journal of Modern Laboratory Medicine, 2023, 38(3): 53-57, 78.
[21] K?RHOLZ K, RIDINGER J, KRUNIC D, et al. Broadspectrum HDAC inhibitors promote autophagy through FOXO transcription factors in neuroblastoma[J]. Cells,2021, 10(5): 1001.
[22] LI Xiaoping, YANG Bo, REN Haixia, et al. Hsa_ circ_0002483 inhibited the progression and enhanced the Taxol sensitivity of non-small cell lung cancer by targeting miR-182-5p[J]. Cell Death Disease, 2019,10(12): 953.
[23] AIMJONGJUN S, MAHMUD Z, JIRAMONGKOL Y, et al. Lapatinib sensitivity in nasopharyngeal carcinoma is modulated by SIRT2-mediated FOXO3 deacetylation[J]. BMC Cancer, 2019, 19(1): 1106.
[24] SHI Shaoyan, WANG Qian, DU Xiaolong. Comprehensive bioinformatics analysis reveals the oncogenic role of FoxM1 and its impact on prognosis,immune microenvironment, and drug sensitivity in osteosarcoma[J]. Journal of Applied Genetics, 2023,64(4): 779-796.
[25] 尹诗源, 李雨晴, 尹玉, 等. 探讨骨肉瘤化疗耐药中FoxM1 与C-myc 的关系及其作用机制[J]. 临床与实验病理学杂志, 2023, 39(2): 195-200. YIN Shiyuan, LI Yuqing, YIN Yu, et al. Correlation of Cellular mitophagy: mechanism, roles in diseases and small molecule pharmacological regulation[J]. Theranostics, 2023, 13(2): 736-766.
[4] NAKAHARA Y, MITSUI J, DATE H, et al. Genomewide association study identifies a new susceptibility locus in PLA2G4C for multiple system atrophy[J]. medRxiv[Preprint], 2023.doi:10.1101/2023.05.02.23289328.
[5] PENG Zhangxiao, CHANG Yanxin, FAN Jianhui, et al. Phospholipase A2 superfamily in cancer[J]. Cancer Letters, 2021, 497: 165-177.
[6] WARD K E, SENGUPTA R, ROPA J P, et al. The cytosolic phospholipase A2α N-terminal C2 domain binds and oligomerizes on membranes with positive curvature[J]. Biomolecules, 2020, 10(647): 647.
[7] OH M, JANG S Y, LEE J Y, et al. The lipoproteinassociated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism[J]. Nature Communications, 2023,14(1): 5728.
[8] OLSEN R S, ANDERSSON R E, ZAR N, et al. Prognostic s ignif icance of PLA2G4C gene polymorphism in patients with stage II colorectal cancer[J]. Acta Oncologica, 2016, 55(4): 474-479.
[9] NANASHIMA N, YAMADA T, SHIMIZU T, et al. Deletion of phospholipase A2 group IVC induces apoptosis in rat mammary tumour cells by the nuclear factor-κB/lipocalin 2 pathway[J]. Biochemical Journal, 2015, 469(2): 315-324.
[10] WANG Yunju, CHANG Songbin, WANG C Y, et al. The selective lipoprotein-associated phospholipase A2 inhibitor darapladib triggers irreversible actions on glioma cell apoptosis and mitochondrial dysfunction[J]. Toxicology and Applied Pharmacology, 2020, 402: 115133.
[11] LIM S C, LEE T B, KANG B S, et al. Extracellular acidity-mediated expression of cPLA2γ confers resistance in gastric cancer cells[J]. Anticancer Research, 2021, 41(1): 211-218.
[12] 陈思言, 张伶莉, 杨丽华.弥漫性大B 细胞淋巴瘤组织中miR-448 和KDM2B 的水平表达及临床意义[J]. 现代检验医学杂志, 2022, 37(4): 128-133. CHEN Siyan, ZHANG Lingli, YANG Lihua. Expression levels and clinical significance of miR-448 and KDM2B in diffuse large B-cell lymphoma tissues[J]. Journal of Modern Laboratory Medicine,2022, 37(4): 128-133.
[13] LI Anqi, GAO Meng, LIU Bilin, et al. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease[J]. Cell Death & Disease, 2022,13(5): 444.
[14] SMITH A G, MACLEOD KF. Autophagy, cancer stem cells and drug resistance[J]. Journal of Pathology, 2019,247(5): 708-718.
[15] PANIGRAHI D P, PRAHARAJ P P, BHOL C S, et al. The emerging, multifaceted role of mitophagy in cancer and cancer therapeutics[J]. Seminars in Cancer Biology,2020, 66: 45-58.
[16] 黄基峰, 张怡, 晏琛. 线粒体自噬在肿瘤干细胞中作用的研究进展[J]. 中国肿瘤临床, 2020, 47(5): 255-259. HUANG Jifeng, ZHANG Yi, YAN Chen. Research advances in the role of mitophagy in cancer stem cells[J]. Chinese Journal of Clinical Oncology, 2020,47(5): 255-259.
[17] TANG Junwei, PENG Wen, JI Jiangzhou, et al. GPR176 promotes cancer progression by interacting with G protein GNAS to restrain cell mitophagy in colorectal cancer[J]. Advanced Science, 2023, 10(12): e2205627.
[18] JIANG Ying, KRANTZ S, QIN Xiang, et al. Caveolin-1 controls mitochondrial damage and ROS production by regulating fission - fusion dynamics and mitophagy[J]. Redox Biology, 2022, 52: 102304.
[19] FENG Ji, ZHOU Jing, WU Yong, et al. Targeting mitophagy as a novel therapeutic approach in liver cancer[J]. Autophagy, 2023, 19(7): 2164-2165.
[20] LI Yun, CHEN Hengxing, LU Daning, et al. Mitophagy is a novel protective mechanism for drug-tolerant persister (DTP) cancer cells[J]. Autophagy, 2023, 19(9): 2618-2619.
[21] DENNY W A. Inhibitors and activators of the p38 mitogen-activated MAP kinase (MAPK) family as drugs to treat cancer and inflammation[J]. Current Cancer Drug Targets, 2022, 22(3): 209-220.
[22] LIU Chi, JIANG Shan, XIE Hui, et al. Long noncoding RNA AC245100.4 contributes to prostate cancer migration via regulating PAR2 and activating p38-MAPK pathway[J]. Medical Oncology, 2022, 39(5): 94.
[23] TANIGAWA K, TSUKAMOTO S, KOMA Y I, et al. S100A8/A9 induced by interaction with macrophages in esophageal squamous cell carcinoma promotes the migration and invasion of cancer cells via Akt and p38 MAPK pathways[J]. American Journal of Pathology,2022, 192(3): 536-552.
[24] KWAK A W, LEE J Y, LEE S O, et al. Echinatin induces reactive Oxygen species-mediated apoptosis via JNK/p38 MAPK signaling pathway in colorectal cancer cells[J]. Phytotherapy Research, 2023, 37(2): 563-577.

备注/Memo

备注/Memo:
基金项目:湖北省卫生健康委科研项目(WJ2023F090)。
作者简介:奥婷婷(1988-),女,硕士研究生,主治医师,研究方向:麻醉,E-mail:a2q97bw@163.com。
通讯作者:姜祯珍(1984-),女,本科,主治医师,研究方向:麻醉,E-mail:jiangzz3884@163.com。
更新日期/Last Update: 2024-11-15