参考文献/References:
[1] 姜富祥, 阿尔宾, 高飞, 等. miR-21 靶向调控PTEN/PI3K/AKT 通路对骨肉瘤细胞增殖?侵袭和凋亡的影响[J]. 现代检验医学杂志, 2022, 37(4): 18-22. JIANG Fuxiang, A Erbin, GAO Fei, et al. Effect of miR-21 targeted regulation of PTEN/PI3K/AKT pathway on the proliferation, invasion and apoptosis of osteosarcoma cells[J]. Journal of Modern Laboratory Medicine, 2022, 37(4): 18-22.
[2] GIACOMINI I, CORTINI M, TINAZZI M, et al. Contribution of mitochondrial activity to doxorubicinresistance in osteosarcoma cells[J]. Cancers(Basel),2023, 15(5): 1370.
[3] NIE Junhua, YANG Tao, LI Hong, et al. Identification of GPC3 mutation and upregulation in a multidrug resistant osteosarcoma and its spheroids as therapeutic target[J]. Journal of Bone Oncology, 2021, 30: 100391.
[4] ZHU Zhihua, ZHANG Wenyu. Efficacy and safety of butorphanol use in patient-controlled analgesia: a meta-analysis[J]. Evidence-based Complementary and Alternative Medicine : 2021, 2021: 5530441.
[5] GUO Peilei, HU Qiangfu, WANG Jiandong, et al. Butorphanol inhibits angiogenesis and migration of hepatocellular carcinoma and regulates MAPK pathway[J]. Journal of Antibiotics, 2022, 75(11): 626-634.
[6] CUI Pengfei, XIN Deqian, LI Fu, et al. Butorphanol suppresses the proliferation and migration of osteosarcoma by promoting the expression of piRNA hsa_piR_006613[J]. Frontiers in Oncology, 2022, 12: 775132.
[7] LI Junnan, CHEN Pengchen, WU Qiushuang, et al. A novel combination treatment of antiADAM17 antibody and erlotinib to overcome acquired drug resistance in non-small cell lung cancer through the FOXO3a/FOXM1 axis[J]. Cellular and Molecular Life Sciences,2022, 79(12): 614.
[8] GHOSH S, SINGH R, VANWINKLE Z M, et al. Microbial metabolite restricts 5-fluorouracil-resistant colonic tumor progression by sensitizing drug transporters via regulation of FOXO3-FOXM1 axis[J]. Theranostics, 2022, 12(12): 5574-5595.
[9] YAO Shang, FAN L Y, LAM E W. The FOXO3-FOXM1 axis: a key cancer drug target and a modulator of cancer drug resistance[J]. Seminars in Cancer Biology, 2018, 50: 77-89.
[10] WANG Baosheng, LI Yuwen, SHEN Yangyang, et al. Butorphanol inhibits the malignant biological behaviors of ovarian cancer cells via down-regulating the expression of TMEFF1[J]. OncoTargets and Therapy,2020, 13: 10973-10981.
[11] CHOI H E, KIM Y, LEE H J, et al. Novel FoxO1 inhibitor, JY-2, ameliorates palmitic acid-induced lipotoxicity and gluconeogenesis in a murine model [J]. European Journal of Pharmacology, 2021, 899: 174011.
[12] MENG Tao, LIN Xiaowen, LI Ximing, et al. Preanesthetic use of Butorphanol for the prevention of emergence agitation in thoracic surgery: A multicenter, randomized controlled trial [J]. Frontiers in Medicine(Lausanne), 2022, 9: 1040168
[13] THIGPEN J C, ODLE B L, HARIRFOROOSH S. Opioids: a review of pharmacokinetics and pharmacodynamics in neonates, infants, and children [J]. European Journal of Drug Metabolism and Pharmacokinetics, 2019, 44(5):591-609.
[14] XIE Nan, MATIGIAN N, VITHANAGE T, et al. Effect of perioperative opioids on cancer-relevant circulating parameters:Mmu opioid receptor and toll-like receptor 4 activation potential,and proteolytic profile[J]. Clinical Cancer Research, 2018, 24(10): 2319-2327.
[15] 杜建国, 张迅, 宗士兰, 等. 布托啡诺通过Hippo/YAP 信号通路影响骨肉瘤MG-63 细胞增殖?迁移和侵袭[J]. 中国肿瘤生物治疗杂志, 2023, 30(9):797-803. DU Jianguo, ZHANG Xun, ZONG Shilan, et al. Butorphanol affects the proliferation,migration and invasion of osteosarcoma MG-63 cells via Hippo/YAP signaling pathway[J]. Chinese Journal of Cancer Biotherapy, 2023, 30(9): 797-803.
[16] MENG Chenyang, ZHAO Zhenqun, BAI Rui, et al. MicroRNA22 regulates autophagy and apoptosis in cisplatin resistance of osteosarcoma[J]. Molecular Medicine Reports, 2020, 22(5): 3911-3921.
[17] 刘伟, 周杨, 边超, 等. miR-495 对食管癌细胞株Eca109 在不同放射剂量和顺铂浓度作用的影响及机制研究[J]. 现代检验医学杂志, 2022, 37(4): 13-17,29. LIU Wei, ZHOU Yang, BIAN Chao, et al. Effect of miR-495 on esophageal cancer cell line Eca109 at different radiation doses and cisplatin concentrations and its mechanism[J]. Journal of Modern Laboratory Medicine, 2022, 37(4): 13-17, 29.
[18] 邹志聪, 温婧, 戴龙彬, 等. 布托啡诺逆转ABCB1蛋白诱导的白血病多重耐药的效果和机制[J]. 中山大学学报(医学版), 2018, 39(4): 526-531. ZOU Zhicong, WEN Jing, DAI Longbin, et al. Efficiency and mechanism sensitizing ABCB1-mediated multidrug resistance of leukemia cells by butorphanol as a synthetic opioid [J]. Journal of Sun Yat-Sen University (Medical Sciences), 2018, 39(4): 526-531.
[19] MARI?O G, NISO-SANTANO M, BAEHRECKE E H,et al. Self-consumption: the interplay of autophagy and apoptosis[J]. Nature Reviews Molecular Cell Biology,2014, 15(2): 81-94.
[20] 曲志梅, 董伟, 刘艳萍. 维奈克拉增强MDS 细胞系对地西他滨化疗敏感性机制的实验研究[J]. 现代检验医学杂志, 2023, 38(3): 53-57, 78. QU Zhimei, DONG Wei, LIU Yanping. Experimental study on the mechanism of venetoclax enhancing the sensitivity of MDS cell lines to decitabine chemotherapy[J]. Journal of Modern Laboratory Medicine, 2023, 38(3): 53-57, 78.
[21] K?RHOLZ K, RIDINGER J, KRUNIC D, et al. Broadspectrum HDAC inhibitors promote autophagy through FOXO transcription factors in neuroblastoma[J]. Cells,2021, 10(5): 1001.
[22] LI Xiaoping, YANG Bo, REN Haixia, et al. Hsa_ circ_0002483 inhibited the progression and enhanced the Taxol sensitivity of non-small cell lung cancer by targeting miR-182-5p[J]. Cell Death Disease, 2019,10(12): 953.
[23] AIMJONGJUN S, MAHMUD Z, JIRAMONGKOL Y, et al. Lapatinib sensitivity in nasopharyngeal carcinoma is modulated by SIRT2-mediated FOXO3 deacetylation[J]. BMC Cancer, 2019, 19(1): 1106.
[24] SHI Shaoyan, WANG Qian, DU Xiaolong. Comprehensive bioinformatics analysis reveals the oncogenic role of FoxM1 and its impact on prognosis,immune microenvironment, and drug sensitivity in osteosarcoma[J]. Journal of Applied Genetics, 2023,64(4): 779-796.
[25] 尹诗源, 李雨晴, 尹玉, 等. 探讨骨肉瘤化疗耐药中FoxM1 与C-myc 的关系及其作用机制[J]. 临床与实验病理学杂志, 2023, 39(2): 195-200. YIN Shiyuan, LI Yuqing, YIN Yu, et al. Correlation of Cellular mitophagy: mechanism, roles in diseases and small molecule pharmacological regulation[J]. Theranostics, 2023, 13(2): 736-766.
[4] NAKAHARA Y, MITSUI J, DATE H, et al. Genomewide association study identifies a new susceptibility locus in PLA2G4C for multiple system atrophy[J]. medRxiv[Preprint], 2023.doi:10.1101/2023.05.02.23289328.
[5] PENG Zhangxiao, CHANG Yanxin, FAN Jianhui, et al. Phospholipase A2 superfamily in cancer[J]. Cancer Letters, 2021, 497: 165-177.
[6] WARD K E, SENGUPTA R, ROPA J P, et al. The cytosolic phospholipase A2α N-terminal C2 domain binds and oligomerizes on membranes with positive curvature[J]. Biomolecules, 2020, 10(647): 647.
[7] OH M, JANG S Y, LEE J Y, et al. The lipoproteinassociated phospholipase A2 inhibitor Darapladib sensitises cancer cells to ferroptosis by remodelling lipid metabolism[J]. Nature Communications, 2023,14(1): 5728.
[8] OLSEN R S, ANDERSSON R E, ZAR N, et al. Prognostic s ignif icance of PLA2G4C gene polymorphism in patients with stage II colorectal cancer[J]. Acta Oncologica, 2016, 55(4): 474-479.
[9] NANASHIMA N, YAMADA T, SHIMIZU T, et al. Deletion of phospholipase A2 group IVC induces apoptosis in rat mammary tumour cells by the nuclear factor-κB/lipocalin 2 pathway[J]. Biochemical Journal, 2015, 469(2): 315-324.
[10] WANG Yunju, CHANG Songbin, WANG C Y, et al. The selective lipoprotein-associated phospholipase A2 inhibitor darapladib triggers irreversible actions on glioma cell apoptosis and mitochondrial dysfunction[J]. Toxicology and Applied Pharmacology, 2020, 402: 115133.
[11] LIM S C, LEE T B, KANG B S, et al. Extracellular acidity-mediated expression of cPLA2γ confers resistance in gastric cancer cells[J]. Anticancer Research, 2021, 41(1): 211-218.
[12] 陈思言, 张伶莉, 杨丽华.弥漫性大B 细胞淋巴瘤组织中miR-448 和KDM2B 的水平表达及临床意义[J]. 现代检验医学杂志, 2022, 37(4): 128-133. CHEN Siyan, ZHANG Lingli, YANG Lihua. Expression levels and clinical significance of miR-448 and KDM2B in diffuse large B-cell lymphoma tissues[J]. Journal of Modern Laboratory Medicine,2022, 37(4): 128-133.
[13] LI Anqi, GAO Meng, LIU Bilin, et al. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease[J]. Cell Death & Disease, 2022,13(5): 444.
[14] SMITH A G, MACLEOD KF. Autophagy, cancer stem cells and drug resistance[J]. Journal of Pathology, 2019,247(5): 708-718.
[15] PANIGRAHI D P, PRAHARAJ P P, BHOL C S, et al. The emerging, multifaceted role of mitophagy in cancer and cancer therapeutics[J]. Seminars in Cancer Biology,2020, 66: 45-58.
[16] 黄基峰, 张怡, 晏琛. 线粒体自噬在肿瘤干细胞中作用的研究进展[J]. 中国肿瘤临床, 2020, 47(5): 255-259. HUANG Jifeng, ZHANG Yi, YAN Chen. Research advances in the role of mitophagy in cancer stem cells[J]. Chinese Journal of Clinical Oncology, 2020,47(5): 255-259.
[17] TANG Junwei, PENG Wen, JI Jiangzhou, et al. GPR176 promotes cancer progression by interacting with G protein GNAS to restrain cell mitophagy in colorectal cancer[J]. Advanced Science, 2023, 10(12): e2205627.
[18] JIANG Ying, KRANTZ S, QIN Xiang, et al. Caveolin-1 controls mitochondrial damage and ROS production by regulating fission - fusion dynamics and mitophagy[J]. Redox Biology, 2022, 52: 102304.
[19] FENG Ji, ZHOU Jing, WU Yong, et al. Targeting mitophagy as a novel therapeutic approach in liver cancer[J]. Autophagy, 2023, 19(7): 2164-2165.
[20] LI Yun, CHEN Hengxing, LU Daning, et al. Mitophagy is a novel protective mechanism for drug-tolerant persister (DTP) cancer cells[J]. Autophagy, 2023, 19(9): 2618-2619.
[21] DENNY W A. Inhibitors and activators of the p38 mitogen-activated MAP kinase (MAPK) family as drugs to treat cancer and inflammation[J]. Current Cancer Drug Targets, 2022, 22(3): 209-220.
[22] LIU Chi, JIANG Shan, XIE Hui, et al. Long noncoding RNA AC245100.4 contributes to prostate cancer migration via regulating PAR2 and activating p38-MAPK pathway[J]. Medical Oncology, 2022, 39(5): 94.
[23] TANIGAWA K, TSUKAMOTO S, KOMA Y I, et al. S100A8/A9 induced by interaction with macrophages in esophageal squamous cell carcinoma promotes the migration and invasion of cancer cells via Akt and p38 MAPK pathways[J]. American Journal of Pathology,2022, 192(3): 536-552.
[24] KWAK A W, LEE J Y, LEE S O, et al. Echinatin induces reactive Oxygen species-mediated apoptosis via JNK/p38 MAPK signaling pathway in colorectal cancer cells[J]. Phytotherapy Research, 2023, 37(2): 563-577.