[1]李亚宁,李成乾.FTO介导m6A修饰的PRKD2调节SIRT1/HIF-1α通路抑制糖尿病肾病足细胞损伤的机制研究[J].现代检验医学杂志,2024,39(01):5-9+22.[doi:10.3969/j.issn.1671-7414.2024.01.002]
 LI Yaning,LI Chengqian.Mechanism of FTO-mediated and m6A-modified PRKD2 Inhibiting Podocyte Injury in Diabetic Kidney Disease through the SIRT1/HIF-1 Pathway[J].Journal of Modern Laboratory Medicine,2024,39(01):5-9+22.[doi:10.3969/j.issn.1671-7414.2024.01.002]
点击复制

FTO介导m6A修饰的PRKD2调节SIRT1/HIF-1α通路抑制糖尿病肾病足细胞损伤的机制研究()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第39卷
期数:
2024年01期
页码:
5-9+22
栏目:
论著
出版日期:
2024-01-15

文章信息/Info

Title:
Mechanism of FTO-mediated and m6A-modified PRKD2 Inhibiting Podocyte Injury in Diabetic Kidney Disease through the SIRT1/HIF-1 Pathway
文章编号:
1671-7414(2024)01-005-06
作者:
李亚宁 李成乾
(青岛大学附属医院内分泌科,山东青岛 264200)
Author(s):
LI Yaning LI Chengqian
(Department of Endocrinology, Affiliated Hospital of Qingdao University, Shandong Qingdao 264200, China)
关键词:
糖尿病肾病足细胞N6 甲基腺苷修饰脂肪和肥胖相关蛋白丝氨酸- 苏氨酸激酶蛋白激酶D2
分类号:
R587.2;R392.11
DOI:
10.3969/j.issn.1671-7414.2024.01.002
文献标志码:
A
摘要:
目的 探究脂肪含量和肥胖相关蛋白(fat mass and obesity-associated protein,FTO)和丝氨酸- 苏氨酸激酶蛋白激酶D2(serine-threonine kinase protein kinase D2,PRKD2)在糖尿病肾病(diabetic kidney disease,DKD)进展中的调控作用和调节机制。方法 采用35 mmol/L 葡萄糖对足细胞(MPC5 细胞)进行高糖刺激24h 构建DKD 体外模型。采用FTO 过表达载体(pcDNA-FTO)和PRKD2 过表达载体(pcDNA-PRKD2),或空载体(vector)转染高糖诱导的MPC5 细胞。通过RT-qPCR 检测FTO 和PRKD2 过表达效率;MeRIP 检测PRKD2 mRNA 的N6- 甲基腺苷(N6-methyladenosine,m6A) 修饰水平;ELISA 检测Caspase-3 活性、IL-6,TNF-α 和单核细胞趋化蛋白-1(monocytechemotactic protein-1,MCP-1)分泌量;流式细胞术分析细胞凋亡率;Western blot 评估FTO 和PRKD2 蛋白水平,以及SIRT1/HIF-1α 通路关键蛋白表达水平;Pearson 分析FTO 和PRKD2 水平的相关性。结果 与无高糖诱导对照组比较,高糖诱导的足细胞中FTO 蛋白(0.51 ± 0.04 vs 1.00 ± 0.03)和PRKD2 蛋白(0.45 ± 0.03 vs 1.01 ± 0.04)水平显著下调,差异具有统计学意义(t=13.17,16.76,均P<0.001)。高糖诱导的足细胞中FTO 蛋白水平和PRKD2 蛋白水平呈正相关(r2=0.705 1,P<0.001)。与vector 组相比,pcDNA-FTO 组PRKD2 mRNA 的m6A 水平(0.56± 0.09 vs1.01± 0.13)降低,PRKD2 mRNA 水平(3.16±0.14 vs 1.03±0.02)显著升高,差异具有统计学意义(t=51.37,11.82,均P<0.001)。与control 组(IL-6:512.76 ± 61.85 pg/ml,TNF-α:28.17 ± 2.83 pg/ml,MCP-1:157.31 ± 17.69 pg/ml)和vector 组(IL-6:498.41 ± 87.51 pg/ml,TNF-α:26.35 ± 5.47 pg/ml,MCP-1:165.52 ± 16.87 pg/ml)比较,pcDNA-PRKD2 组IL-6(301.86 ± 21.85 pg/ml),TNF-α(11.06 ± 4.12 pg/ml),MCP-1 分泌量(81.45 ± 9.03pg/ml)显著减少,差异具有统计学意义(F=7.51,10.47,61.97,均P<0.01)。与control 组(Caspase-3:689.65 ± 79.5U/L,细胞凋亡率:22.31% ± 2.69%)和vector 组(Caspase-3:715.91 ± 113.58 U/L,细胞凋亡率:21.07% ± 3.28%)比较,pcDNA-PRKD2 组Caspase-3 活性(437.64 ± 104.76 U/L)和细胞凋亡率(8.41% ± 3.15%)下降,差异具有统计学意义(F=2.35,79.13,均P<0.01)。与control 组(SIRT1:1.01 ± 0.05,HIF-1α:1.03 ± 0.07)和vector 组(SIRT1:0.97± 0.05,HIF-1α:1.02 ± 0.03)相比,pcDNA-PRKD2 组SIRT1 蛋白(3.51 ± 0.15)水平升高,HIF-1α 蛋白(0.37 ± 0.07)水平降低,差异具有统计学意义(F=31.54,8.31,均P<0.01)。结论 FTO 介导m6A 修饰的PRKD2 通过SIRT1/HIF-1α 通路抑制高糖诱导的足细胞炎症反应和细胞凋亡。
Abstract:
Objective To explore the regulatory role of fat mass and obesity-associated protein (FTO) and serine-threonine kinase protein kinase D2 (PRKD2) in progression of diabetic kidney disease (DKD) and its regulatory mechanisms. Methods  DKD model in vitro was constructed by podocytes (MPC5 cells) treated with high glucose (HG, 35 mmol/L glucose) for 24 h. HG-induced MPC5 cells were transfected with FTO overexpression vector (pcDNA-FTO) and PRKD2 overexpression vector (pcDNA-PRKD2), or empty vector. The overexpression efficiency of FTO and PRKD2 were detected with RT-qPCR. MeRIP was used to detect the N6-methyladenosine(m6A) modification level of PRKD2 mRNA. The activity of Caspase-3 and the secretion of IL-6, TNF-α and monocyte chemotactic protein-1(MCP-1) were detected by ELISA. Cell apoptosis rate was analyzed by flow cytometry. The protein levels of FTO and PRKD2, as well as the key proteins in SIRT1/HIF-1α pathway, were evaluated by Western blot. Pearson analysis was used to analyze the correlation between FTO levels and PRKD2 levels. Results Compared with the control group without HG-induction, the protein expression of FTO (0.51 ± 0.04 vs 1.00 ± 0.03) and PRKD2 (0.45 ± 0.03 vs 1.01 ± 0.04) was significantly down-regulated in HG-induced podocytes, and the differences were statistically significant (t=13.17, 16.76, all P<0.001). FTO protein levels were positively correlated with PRKD2 protein levels in HG-induced podocytes (r2=0.705 1, P<0.001). Compared with the vector group, the m6A levels of PRKD2 mRNA (0.56 ± 0.09 vs 1.01 ± 0.13) in the pcDNA-FTO group were decreased, and the mRNA levels of PRKD2 (3.16 ± 0.14 vs 1.03 ± 0.02) were increased, with significant differences (t=51.37, 11.82, all P<0.001). Compared with the control group (IL-6: 512.76 ± 61.85 pg/ml, TNF-α: 28.17 ± 2.83 pg/ml, MCP-1: 157.31 ± 17.69 pg/ml) and the vector group (IL-6: 498.41 ± 87.51 pg/ml, TNF-α: 26.35 ± 5.47 pg/ml, MCP-1: 165.52 ± 16.87 pg/ml), the secretion of IL-6 (301.86 ± 21.85 pg/ml), TNF-α (11.06 ± 4.12 pg/ml) and MCP-1 (81.45 ± 9.03 pg/ml) were significantly decreased in the pcDNA-PRKD2 group, and the differences were statistically significant (F=7.51, 10.47, 61.97, all P<0.01). Compared with the control group (caspase-3 activity: 689.65 ± 79.5 U/L, cell apoptosis: 22.31% ± 2.69%) and the vector group (Caspase-3 activity: 715.91 ± 113.58 U/L, cell apoptosis: 21.07% ± 3.28%), Caspase-3 activity (437.64 ± 104.76 U/L) and the rate of apoptosis (8.41% ± 3.15%) were significantly decreased in the pcDNA-PRKD2 group, and the differences were statistically significant (F=2.35, 79.13, all P<0.01). Compared with the control group (SIRT1: 1.01 ± 0.05, HIF-1α: 1.03 ± 0.07) and the vector group (SIRT1: 0.97 ± 0.05, HIF-1α: 1.02 ± 0.03), SIRT1 protein levels (3.51 ± 0.15) were increased and HIF-1α protein levels (0.37 ± 0.07) were decreased in the pcDNA-PRKD2 group, and the differences were statistically significant (F=31.54, 8.31, all P<0.01). Conclusion FTO-mediated and m6A-modified PRKD2 suppresses inflammation and apoptosis in HG-induced podocytes through the SIRT1/HIF-1 pathway.

参考文献/References:

[1] PELLE M C, PROVENZANO M, BUSUTTI M, et al. Up-date on diabetic nephropathy[J]. Life (Basel, Switzerland), 2022, 12(8): 1202.
[2] YANG Ming, CHEN Wei, HE Liyu, et al. Intermittent fasting-a healthy dietary pattern for diabetic nephropathy[J]. Nutrients, 2022, 14(19): 3995.
[3] HU Qichao, JIANG Lan, YAN Qi, et al. A natural products solution to diabetic nephropathy therapy[J].Pharmacology & Therapeutics, 2023, 241: 108314.
[4] STEFANSSON V T N, NAIR V, MELSOM T, et al. Molecular programs associated with glomerular hyperfiltration in early diabetic kidney disease[J].Kidney International, 2022, 102(6): 1345-1358.
[5] 杨阳,吕幸,彭俊华.牛磺酸上调基因1 在糖尿病及其并发症中的研究进展[J]. 现代检验医学杂志,2022, 37(6): 198-204. YANG Yang, L? Xing, PENG Junhua. Progress in research of taurine up-regulated gene 1 in diabetes mellitus and its complications[J]. Journal of Modern Laboratory Medicine, 2022, 37(6): 198-204.
[6] MOHANDES S, DOKE T, HU Hailong, et al. Molecular pathways that drive diabetic kidney disease[J]. Journal of Clinical Investigation, 2023, 133(4): e165654.
[7] JIAO Yang, WILLIAMS A, WEI Ning. Quercetin ameliorated insulin resistance via regulating METTL3-mediated N6-methyladenosine modification of PRKD2 mRNA in skeletal muscle and C2C12 myocyte cell line[J]. Nutrition, Metabolism, and Cardiovascular Diseases, 2022, 32(11): 2655-2668.
[8] OPAZO-R?OS L, MAS S, MAR?N-ROYO G, et al. Lipotoxicity and diabetic nephropathy: novel mechanistic insights and therapeutic opportunities[J].International Journal of Molecular Sciences, 2020, 21(7): 2632.
[9] PARWANI K, MANDAL P. Role of advanced glycation end products and insulin resistance in diabetic nephropathy[J]. Archives of Physiology and Biochemistry, 2023, 129(1): 95-107.
[10] SENDINC E, SHI Yang. RNA m6A methylation across the transcriptome[J]. Molecular Cell, 2023, 83(3): 428-441.
[11] WANG Yuting, WANG Yujie, GU Jiarui, et al. The role of RNA m6A methylation in lipid metabolism[J].Frontiers in Endocrinology(Lausanne), 2022, 13: 866116.
[12] SANZ A B, SANCHEZ-NI?O M D, RAMOS A M, et al. Regulated cell death pathways in kidney disease[J].Nature Reviews Nephrology, 2023, 19(5): 281-299.
[13] TUTTLE K R, AGARWAL R, ALPERS C E, et al. Molecular mechanisms and therapeutic targets for diabetic kidney disease[J]. Kidney International, 2022, 102(2): 248-260.
[14] KOPP J B, ANDERS H J, SUSZTAK K, et al. Podocytopathies[J]. Nature Reviews Disease Primers, 2020, 6(1): 68.
[15] LIU Tongtong, YANG Liping, MAO Huimin, et al. Sirtuins as novel pharmacological targets in podocyte injury and related glomerular diseases[J]. Biomedecine & Pharmacotherapie, 2022, 155: 113620.
[16] STARUSCHENKO A, MA Rong, PALYGIN O, et al. Ion channels and channelopathies in glomeruli[J].Physiological Reviews, 2023, 103(1): 787-854.
[17] DING Hong, TANG Chuanfeng, WANG Wei, et al. Polydatin ameliorates high fructose-induced podocyte oxidative stress via suppressing HIF-1α/NOX4 pathway[J]. Pharmaceutics, 2022, 14(10): 2202.
[18] KANG M K, KIM S I, OH S Y, et al. Tangeretin ameliorates glucose-induced podocyte injury through blocking epithelial to mesenchymal transition caused by oxidative stress and hypoxia[J]. International Journal of Molecular Sciences, 2020, 21(22): 8577.
[19] 伍义文,曹健斌,黄维佳,等.m6A 甲基转移酶METTL3 介导miR-127 调控非小细胞肺癌细胞系自噬的机制研究[J].现代检验医学杂志,2022,37(2):12-16, 32. WU Yiwen, CAO Jianbin, HUANG Weijia, et al. Mechanism of M6A methyltransferase METTL3 mediates miR-127 to regulate autophagy in nonsmall cell lung cancer cell lines[J]. Journal of Modern Laboratory Medicine, 2022, 37(2): 12-16, 32.
[20] LU Zhihui, LIU Hong, SONG Nana, et al. METTL14 aggravates podocyte injury and glomerulopathy progression through N6 - methyladenosine - dependent downregulating of Sirt1[J]. Cell Death & Disease, 2021, 12(10): 881.
[21] AZZAM S K, ALSAFAR H, SAJINI A A. FTO m6A demethylase in obesity and cancer: Implications and underlying molecular mechanisms[J]. International Journal of Molecular Sciences, 2022, 23(7): 3800.
[22] SUN Qiang, GENG Houfa, ZHAO Meng, et al. FTO-mediated m6A modification of SOCS1 mRNA promotes the progression of diabetic kidney disease[J].Clinical and Translational Medicine, 2022, 12(6): e942.
[23] HU Jinxiu, WANG Qimeng, FAN Xiaoting, et al. Long noncoding RNA ENST00000436340 promotes podocyte injury in diabetic kidney disease by facilitating the association of PTBP1 with RAB3B[J].Cell Death & Disease, 2023, 14(2): 130.
[24] TRUJILLO-VIERA J, EL-MERAHBI R, SCHMIDT V, et al. Protein kinase D2 drives chylomicron-mediated lipid transport in the intestine and promotes obesity[J].EMBO Molecular Medicine, 2021, 13(5): e13548.
[25] XIAO Yao, WANG Can, CHEN Jiayu, et al. Deficiency of PRKD2 triggers hyperinsulinemia and metabolic disorders[J]. Nature Communications, 2018, 9(1): 2015.
[26] YANG Yunshu, LIU Yang, WANG Yunwei, et al. Regulation of SIRT1 and its roles in inflammation[J].Frontiers in Immunology, 2022, 13: 831168.
[27] CHANG Jing, ZHENG Jinsu, GAO Xia, et al. TangShenWeiNing formula prevents diabetic nephropathy by protecting podocytes through the SIRT1/HIF-1α pathway[J]. Frontiers in Endocrinology, (Lausanne) 2022, 13: 888611.
[28] SUN Xiaohong, HUANG Kaipeng, XIAO Hai ming, et al. Connexin 43 prevents the progression of diabetic renal tubulointerstitial fibrosis by regulating the SIRT1-HIF-1α signaling pathway[J]. Clinical Science (London), 2020, 134(13): 1573-1592.

相似文献/References:

[1]张春雷,曾学辉,李忠新,等.尿KIM-1和NGAL在糖尿病肾病早期诊断中的应用[J].现代检验医学杂志,2015,30(01):52.[doi:10.3969/j.issn.1671-7414.2015.01.014]
 ZHANG Chun-lei,ZENG Xue-hui,LI Zhong-xin,et al.Value of Urinary KIM-1 and NGAL in Predicting the Early Diabetic Nephropathy[J].Journal of Modern Laboratory Medicine,2015,30(01):52.[doi:10.3969/j.issn.1671-7414.2015.01.014]
[2]阿地拉·阿布里孜,王 霞,屈晓威.联合检测视黄醇结合蛋白和膜联蛋白A2水平对糖尿病肾病早期诊断的意义[J].现代检验医学杂志,2016,31(05):118.[doi:10.3969/j.issn.1671-7414.2016.05.033]
 ADILA·Abulizi,WANG Xia,QU Xiao-wei.Significance of Combined Detection of Serum Retinol-Binding Protein and AnnexinA2 in Diabetic Nephropathy[J].Journal of Modern Laboratory Medicine,2016,31(01):118.[doi:10.3969/j.issn.1671-7414.2016.05.033]
[3]于菲菲,庞白冰,杨 华,等.单纯性2型糖尿病与糖尿病肾病患者尿液中α1-微球蛋白和激肽原1的表达分析[J].现代检验医学杂志,2017,32(05):94.[doi:10.3969/j.issn.1671-7414.2017.05.017]
 YU Fei-fei,PANG Bai-bing,YANG Hua,et al.Expression Analysis of α1-Microglobulin,Kininogen1 in Urine of Simple Type 2 Diabetes and Diabetic Nephropathy Patients[J].Journal of Modern Laboratory Medicine,2017,32(01):94.[doi:10.3969/j.issn.1671-7414.2017.05.017]
[4]吴忠璟,陈亚凤,高芳虹.糖尿病肾病患者血清miR-135b水平检测与疾病预后的相关性研究[J].现代检验医学杂志,2018,33(03):88.[doi:10.3969/j.issn.1671-7414.2018.03.022]
 WU Zhong-jing,CHEN Ya-feng,GAO Fang-hong.Correlation between Serum miR-135b Level and Prognosis in Patients with Diabetic Nephropathy[J].Journal of Modern Laboratory Medicine,2018,33(01):88.[doi:10.3969/j.issn.1671-7414.2018.03.022]
[5]杨翠伶.血清miR-150-5p和miR-155-5检测对老年糖尿病肾病的诊断价值[J].现代检验医学杂志,2018,33(05):74.[doi:10.3969/j.issn.1671-7414.2018.05.020]
 YANG Cui-ling.Diagnostic Value of Serum miR-150-5p and miR-155-5 Detection in Elderly Diabetic Nephropathy[J].Journal of Modern Laboratory Medicine,2018,33(01):74.[doi:10.3969/j.issn.1671-7414.2018.05.020]
[6]谭志敏,张 燕,滕雅娟,等.糖尿病肾病患者血清甲状腺激素水平变化及其与亚临床甲状腺功能减退的相关性[J].现代检验医学杂志,2018,33(06):95.[doi:10.3969/j.issn.1671-7414.2018.06.025]
 TAN Zhi-min,ZHANG Yan,TENG Ya-juan,et al.Correlation between Serum Thyroid Hormone Levels in Patients with Diabetic Kidney Disease and Subclinical Hypothyroidism[J].Journal of Modern Laboratory Medicine,2018,33(01):95.[doi:10.3969/j.issn.1671-7414.2018.06.025]
[7]张求霞a,汪隆海a,昌国庆a,等.尿液6种蛋白与CysC水平检测对糖尿病肾病的诊断价值[J].现代检验医学杂志,2019,34(01):67.[doi:10.3969/j.issn.1671-7414.2019.01.017]
 ZHANG Qiu-xiaa,WANG Long-haia,CHANG Guo-qing a,et al.Clinical Value of Detection of 6 Proteins and Cystatin C in Urine for Early Diagnosis of Diabetic Kidney Disease[J].Journal of Modern Laboratory Medicine,2019,34(01):67.[doi:10.3969/j.issn.1671-7414.2019.01.017]
[8]张曙晴,张骆军,李洪彬,等.血液小而密低密度脂蛋白胆固醇、抗凝血酶Ⅲ水平及血小板参数检测在2型糖尿病肾病中的应用价值研究[J].现代检验医学杂志,2021,36(02):70.[doi:doi:10.3969/j.issn.1671-7414.2021.02.017]
 ZHANG Shu-qing,ZHANG Luo-jun,LI Hong-bin,et al.Study on the Application Value of Detecting Small Dense Low-density Lipoprotein Cholesterol, Antithrombin-Ⅲ Levels and Platelet Parameter in the Patients with Type-2 Diabetic Nephropathy[J].Journal of Modern Laboratory Medicine,2021,36(01):70.[doi:doi:10.3969/j.issn.1671-7414.2021.02.017]
[9]闫海燕,杨云秀,杨云华,等.老年糖尿病肾病患者血清SP-D水平表达及其基因多态性与并发肺部感染的相关性研究[J].现代检验医学杂志,2021,36(04):21.[doi:10.3969/j.issn.1671-7414.2021.04.005]
 YAN Hai-yan,YANG Yun-xiu,YANG Yun-hua,et al.Research on the Relationship between Serum SP-D Level, Gene Olymorphismand Pulmonary Infection in Elderly Patients with Diabetic Nephropathy[J].Journal of Modern Laboratory Medicine,2021,36(01):21.[doi:10.3969/j.issn.1671-7414.2021.04.005]
[10]祁桠楠a,胡江伟b,武 亮c,等.血清TLR-3,miR-181b及URBP联合检测在糖尿病肾病诊断及预后判断的价值研究[J].现代检验医学杂志,2022,37(02):37.[doi:10.3969/j.issn.1671-7414.2022.02.008]
 QI Ya-nana,HU Jiang-weib,WU Liangc,et al.Value of Combined Detection of Serum TLR-3, miR-181b and URBP in Diagnosis and Prognosis of Diabetic Nephropathy[J].Journal of Modern Laboratory Medicine,2022,37(01):37.[doi:10.3969/j.issn.1671-7414.2022.02.008]

备注/Memo

备注/Memo:
作者简介:李亚宁(1985-),女,本科,硕士研究生在读,副主任医师,研究方向:糖尿病发病机制、糖尿病诊治,E-mail:he_554706@163.com。
通讯作者:李成乾(1974-),男,博士,副主任医师,E-mail:13754620843@163.com。
更新日期/Last Update: 2024-01-15