[1]王 辉,徐克和,唐书强,等.临床生化酶类测定应用保证西格玛与长期缺陷率在统计质量控制策略中的应用[J].现代检验医学杂志,2020,35(01):143-145.[doi:10.3969/j.issn.1671-7414.2020.01.038]
 WANG Hui,XU Ke-he,TANG Shu-qiang,et al.Use of Assured Sigma and Defects Per Million in Statistical Quality Control Strategies in Clinical Enzymes Measurements[J].Journal of Modern Laboratory Medicine,2020,35(01):143-145.[doi:10.3969/j.issn.1671-7414.2020.01.038]
点击复制

临床生化酶类测定应用保证西格玛与长期缺陷率在统计质量控制策略中的应用()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第35卷
期数:
2020年01期
页码:
143-145
栏目:
质量控制·实验室管理
出版日期:
2020-02-29

文章信息/Info

Title:
Use of Assured Sigma and Defects Per Million in Statistical Quality Control Strategies in Clinical Enzymes Measurements
文章编号:
1671-7414(2020)01-143-03
作者:
王 辉徐克和唐书强黄亨建
(四川大学华西医院实验医学科,成都 610041)
Author(s):
WANG Hui XU Ke-he TANG Shu-qiang HUANG Heng-jian
(Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu 610041, China)
关键词:
西格玛 统计质量控制 短期西格玛 保证西格玛 长期缺陷率
分类号:
R446
DOI:
10.3969/j.issn.1671-7414.2020.01.038
文献标志码:
A
摘要:
目的 应用实验室生化酶学测定项目的短期西格玛(Sigmashort-term)估算其保证西格玛SigmaAssured,并依据系统误差功效图得出相应的统计质量控制(statistical quality control,SQC)规则,估计生化酶学测定项目的长期缺陷率(defects per million, DPM),确保实验室生化酶学测定项目结果的可靠。方法 计算公式Sigma =(TEa–Bias)/CV; Sigmalong-term= Sigmashort-term-1.5; SigmaAssured= SigmaObserved– SigmaSQC, SigmaAssured=1.65,SQC规则为13s/22s/R4s/41s/8x,N=2。结果 计算得到实验室丙氨酸氨基转移酶(ALT)的Sigmashort-term=3.6,DPM=274 253; 天门冬氨酸氨基转移酶(AST)的Sigmashort-term=7.9,DPM<3.4; 谷氨酰基转移酶(GGT)的Sigmashort-term=5.6,DPM=4 661; 碱性磷酸酶(ALP)的Sigmashort-term=7.4,DPM=5; 淀粉酶(AMY)Sigmashort-term=17.7,DPM<3.4; 肌酸激酶(CK)Sigmashort-term=9.3,DPM≤3.4; 乳酸脱氢酶(LDH)的Sigmashort-term=6.1,DPM=968; 脂肪酶(LPS)的Sigmashort-term=5.3,DPM=10 724。结论 实验室生化酶学测定项目期望的长期缺陷率在误差检出率(Ped)达到90%,其SigmaAssured在1.65,相同的SQC规则13s/22s/R4s/41s/8x,N=2,的情况下,其Sigma short-term越大,长期DPM越低,才能确保生化酶学测定项目的结果可靠。
Abstract:
Objective To estimate the assured Sigma by using the short term Sigma, obtain the statistical quality control(SQC)procedure according to the power function graph, and estimate the defects per million(DPM)of those items. These procedures can ensure reliable results in the laboratory. Methods The computationalformula were: Sigma =(TEa–Bias)/CV; Sigmalong-term= Sigmashort-term–1.5; SigmaAssured= SigmaObserved– SigmaSQC, SigmaAssured=1.65, and SQC procedure was 13s/22s/R4s/41s/8x,N=2. Results For alanine aminotransferase(ALT), Sigmashort-term=3.6, DPM=274 253. For aspartate amino transferase(AST), Sigmashort-term=7.9,DPM<3.4. For gamma-glutamyl transpeptidase(GGT), Sigmashort-term=5.6,DPM=4661. For alkaline phosphatase(ALP), Sigmashort-term=7.4, DPM=5. For amylase(AMY), Sigmashort-term=17.7,DPM<3.4. For creatine kinase(CK), Sigmashort-term=9.3, DPM≤3.4. For lactic dehydrogenase(LDH), Sigmashort-term=6.1, DPM=968. For lipase(LPS), Sigmashort-term=5.3,DPM=10 724.Conclusion When the probability of error detection(Ped)was ≥90%,assured Sigma was 1.65 and the SQC procedure was 13s/22s/R4s/41s/8x,N=2. It was found that the long term DPM was lower when the Sigmashort-term was higher, and this enabled reliable results in clinical enzymes measurements.

参考文献/References:

[1] WESTGARD J O. Basic quality control practices[M]. 4th ed. MadisonWI: Westgard QC, Inc, 2016.
[2] CANO E L, MOGUERZA J M, REDCHUK A. Six Sigma with R: Statistical Engineering for Process Improvement[M]. New York: Springer Science Business Media, 2012.
[3] Westgard JO. Six sigma quality design and control[M]. 2nd ed. Madison: Westgard QC, Inc, 2001.
[4] 王辉, 徐克和, 唐书强, 等. 临床化学实验室质量控制计算实际西格玛值的新方法[J]. 现代检验医学杂志, 2019, 34(2):132-136. WANG Hui, XU Kehe, TANG Shuqiang, et al. New method for calculating the actual sigma metricsin clinical chemistry laboratory quality control[J]. J Mod Lab Med,2019,34(2):132-136.
[5] BAYAT H. Expected long-term defect rate of analytical performance in the medical laboratory: Assured Sigma versus observed Sigma[J]. Biochem Med(Zagreb),2018, 28(2):020101.
[6] Clinical and Laboratory Standards Institute(CLSI). CLSI C24-A3. Statistical quality control for quantitative measurement procedures: Principles and Definitions[S]. Wayne,PA: CLSIC24-A3, 2016.

相似文献/References:

[1]章晓燕,王 薇,王治国.临床检验正确度控制品-评估偏倚[J].现代检验医学杂志,2016,31(05):147.[doi:10.3969/j.issn.1671-7414.2016.05.044]
 ZHANG Xiao-yan,WANG Wei,WANG Zhi-guo.Trueness Controls of Clinical Laboratory to Assess Bias[J].Journal of Modern Laboratory Medicine,2016,31(01):147.[doi:10.3969/j.issn.1671-7414.2016.05.044]
[2]王 麟,成景松,胡雪竹.应用统计质量控制(SQC)和诺曼图相结合方法对临床血液学常规检验项目风险管理[J].现代检验医学杂志,2019,34(03):148.[doi:10.3969/j.issn.1671-7414.2019.03.038]
 WANG Lin,CHENG Jing-song,HU Xue-zhu.Applying Statistical Quality Control(SQC)and Norman Diagram tothe Risk Management of Clinical Hematology Routine Test Items[J].Journal of Modern Laboratory Medicine,2019,34(01):148.[doi:10.3969/j.issn.1671-7414.2019.03.038]

备注/Memo

备注/Memo:
作者简介:王辉(1982-),女,学士,技师,从事实验室管理工作,E-mail:2441883570@qq.com。收稿日期:2019-08-08 修稿日期:2019-10-12
更新日期/Last Update: 2020-03-30