参考文献/References:
[1] 魏晓丽, 李运璧. 钙结合蛋白S100A8 及其临床应用
前景[J]. 实用医院临床杂志,2014,11(6):194-197.
WEI Xiaoli ,LI Yunbi. The significance and research
progress of calcium binding protein S100A8 in sepsis [J].
Practical Journal of Clinical Medicine, 2014,11 (6): 194-
197.
[2] 陈杏兰, 李胜男, 陈少凤, 等.S100A8/A9 和
S100A12 与动脉粥样硬化关系的研究进展[J].海南
医学,2020,31(5):647-652.
CHEN Xinglan, LI Shengnan, CHEN Shaofeng, et al.
Research progress on the relationship between S100A8/
A9 and S100A12 and atherosclerosis [J]. Hainan Med J,
2020,31 (5) : 647-652.
[3] WANG Siwen,SONG Rui,WANG Ziyi, et al.
S100A8/A9 in Inflammation[J]. Frontiers in
Immunology,2018,9:1298.
[4] 张新鑫,潘一龙,王琳琳,等.S100A8/A9 蛋白在
心血管疾病中的研究进展[J].医学综述,2019,25
(20):4093-4097.
ZHANG Xinxin, PAN Yilong, WANG Linlin, et
al.Research advances in S100A8/A9 in cardiovascular
diseases [J]. Medical Recapitulate, 2019,25 (20) : 4093-
4097.
[5] MA Li , SUN Peng , ZHANG Jiancheng , et al.
Proinflammatory effects of S100A8/A9 via TLR4 and
RAGE signaling pathways in BV-2 microglial cells[J].
International Journal of Molecular Medicine, 2017,
40(1): 31-38.
[6] NAKAJIMA Y, INAGAKI Y, KIDO J, et al. Advanced glycation
end products increase expression of S100A8 and A9 via
RAGE-MAPK in rat dental pulp cells[J]. Oral Diseases, 2015,
21(3): 328-334.
[7] SCHENTEN V, PLAN?ON S, JUNG N,et al. Secretion
of the phosphorylated form of S100A9 from neutrophils
is essential for the proinflammatory functions of
extracellular S100A8/A9 [J].Front Immunol,2018,9:447.
[8] CHEN Xiaonan,TAO Ting,WANG Hongyan,et al.
Arterial thrombosis is accompanied by elevated mitogenactivated
protein kinase (MAPK) and Cyclooxygenase-2
(COX-2) expression via toll-like receptor 4 (TLR-
4) activation by S100A8/A9 [J]. Medical Science
Monitor,2018, 24:7673-7681
[9] WANG Yinna, SUN Yi, WANG Ying, et al. Serum
S100A12 and progression of coronary artery calcification
over 4 years in hemodialysis patients [J]. American
Journal of Nephrology,2015, 42(1):4-13
[10] 周红,董莉.miRNA 在自体细胞移植治疗扩张型心
肌病的意义[J].现代检验医学杂志,2018,33(5):
155-156,160.
ZHOU Hong, DONG Li. The significance of miRNA in
the treatment of dilated cardiomyopathy with autologous
cell transplantation [J]. Journal of Modern Laboratory
Medicine ,2018,33(5):155-156,160.
[11] 阮志敏,武力勇,朱国富,等.microRNA-21 与冠
心病的相关性研究[J].临床心血管病杂志,2015,
31(1):50-53.
RUAN Zhimin, WU Liyong, ZHU Guofu, et al.
Correlationship between microRNA-21 and coronary
heart disease[J]. Journal of Clinical Cardiology, 2015,31
(1) : 50-53.
[12] CANFR?N-DUQUE A, ROTLLAN N, ZHANG Xinbo,
et al. Macrophage deficiency of miR-21 promotes
apoptosis,plaque necrosis,and vascular inflammation
during atherogenesis[J]. EMBO Molecular Medicine,
2017, 9(9): 1244-1262.
[13] FENG Jun,LI Antai,DENG Jingyuan, et al. miR-
21 attenuates lipopolysaccharide-induced lipid
accumulation and inflammatory response: potential
role in cerebrovascular disease [J]. Lipids in Health and
Diseas,2014,13:27.
[14] WU Huiliang, ZHANG Jing. miR-126 in peripheral
blood mononuclear cells negatively correlates with
risk and severity and is associated with inflammatory
cytokines as well as intercellular adhesion molecule-1
in patients with coronary artery disease[J]. Cardiology,
2018, 139(2): 110-118.
[15] CHISTIAKOV D A, OREKHOV A N, BOBRYSHEV Y
V . The role of miR-126 in embryonic angiogenesis,
adult vascular homeostasis, and vascular repair and its
alterations in atherosclerotic disease [J]. J Mol Cell
Cardiol,2016,97:47-55.
[16] TANG Feng, YANG Tianlun. MicroRNA-126 alleviates
endothelial cells injury in atherosclerosis by restoring
autophagic flux via inhibiting of PI3K/Akt/mTOR
pathway [J]. Biochemical and Biophysical Research
Communications , 2018, 495(1): 1482-1489.
[17] LI Xiaoyi,KONG Deyong,CHEN Heming, et al.
MiR-155 acts as an anti-inflammatory factor in
atherosclerosis-associated foam cell formation by
repressing calcium-regulated heat stable protein 1[J].
Scientific Reports,2016,6:21789
[18] 顾燕妮,谢春毅.miRNA 与动脉粥样硬化炎症机制
研究进展[J].中国免疫学杂志,2019,35(20):
2544-2549.
GU Yanni,XIE Chunyi. Potential role of miRNA
expression in inflammation during atherogenesis:A
review [J]. Chinese Journal of Immunology, 209,35 (20):
2544-2549.
[19] PLEVA L,KUSNIEROVA P,PLEVOVA P ,et al.
Increased levels of MMP-3, MMP-9 and MPO represent
predictors of in-stent restenosis, while increased levels
of ADMA, LCAT, ApoE and ApoD predict bare metal
stent patency [J]. Biomed Pap Med Fac Univ Palacky
Olomouc Czech Repub, 2015, 159(4): 586-594.
[20] 袁山旗,赵红敏,王晓叶,等.颈动脉超声联合血
管内皮生长因子、基质金属蛋白酶-9、超敏C 反应
蛋白检测在动脉粥样硬化斑块稳定性中的应用分析
[J].实用临床医药杂志,2019,23(17):27-29, 33.
YUAN Shanqi, ZHAO Hongmin,WANG Xiaoye, et al.
Application analysis of carotid ultrasound combined with
detections of vascular endothelial growth factor, matrix
metalloproteinase -9 and hypersensitive C-reactive
protein in the stability of atherosclerotic plaque [J].
Journal of Clinical Medicine in Practice, 2019,23 (17) :
27-29, 33.
[21] WU Xiaoyue, CHEN Lijun, ZEB F, et al. Clock-bmal1 mediates MMP9 induction in acrolein-promoted
atherosclerosis associated with gut microbiota
regulation[J]. Environmental Pollution, 2019,252(Pt B):
1455-1463.
[22] UGOCHUKWU SHOLA OWOLABI, ALOK RAVINDRA
AMRAOTKAR, COULTER A R, et al. Change in
matrix metalloproteinase 2, 3 and 9 levels at the time of
and after acute atherothrombotic myocardial infarction [J].
Journal of Thrombosis and Thrombolysis, 2020, 49(2):
235-244.
[23] 王志明,赵嫦清,杨丽霞.细胞外基质金属蛋白酶
诱导因子在动脉粥样硬化核因子κB 信号通路交叉
调控中的研究进展[J]. 安徽医药, 2020, 24(1):65-
68, 后插1.
WANG Zhiming, ZHAO Changqing, YANG Lixia. Research
progress of EMMPRIN in the cross regulation
of NF-kappa B signaling pathway in atherosclerosis [J].
Anhui Medical and Pharmaceutical Journal,2020,24
(1): 65-68 ,Insert after 1.
[24] ZABOROWSKI M P , BALAJ L , BREAKEFIELD X
O , et al. Extracellular vesicles:composition,biological
relevance,and methods of study[J]. Bioscience, 2015,
65(8): 783-797.
[25] 权晓慧,王聪霞,李毓杰,等.内皮微粒CD31+/
CD42b- 水平、颈动脉内膜中层厚度与冠状动脉病
变程度的相关性[J].中国老年学杂志,2016,36
(11):2650-2652.
QUAN Xiaohui, WANG Congxia, LI Yujie,et al.Correlation
between the level of endothelial microparticle
CD31+ / CD42b-, carotid intima-media thickness and
the degree of coronary artery disease [J]. Chinese Journal
of Gerontology , 2016,36 (11) : 2650-2652.
[26] JANSEN F , STUMPF T , PROEBSTING S, et al.
Intercellular transfer of miR-126-3p by endothelial
microparticles reduces vascular smooth muscle cell
proliferation and limits neointima formation by
inhibiting LRP6[J]. J Mol Cell Cardiol,2017 ,
104:43-52.
[27] HAN Wenqi, CHANG Fengjun, WANG Qunrang, et al.
Microparticles from patients with the acute coronary
syndrome impair vasodilatation by inhibiting the Akt/
eNOS-Hsp90 signaling pathway[J]. Cardiology, 2015,
132(4):252-260.
[28] PAUDEK R, PANTH N, KIM D W. Circulating
endothelial microparticles: a key hallmark of
atherosclerosis progression [J]. Scientifica (Cairo).
2016, 2016: 8514056.
[29] DE LA FUENTE M, MACDONALD T T, HERMOSO
M A. The IL-33/ST2 axis: Role in health and disease
[J]. Cytokine & Growth Factor Reviews, 2015,
26(6):615-623.
[30] XIA Jinggang, QU Yang, YIN Chunlin, et al.
Preliminary study of beta-blocker therapy on
modulation of interleukin-33/ST2 signaling during
ventricular remodeling after acute myocardial
infarction[J]. Cardiology Journal, 2017, 24(2): 188-194.
[31] BENAMEUR T, OSMAN A, PARRAY A, et al.
Molecular mechanisms underpinning microparticlemediated
cellular injury in cardiovascular complications
associated with diabetes [J] Oxid Med Cell Longev,
2019, 2019: 6475187.
[32] 米日巴尼·买吐松, 袁玉娟, 穆叶赛·尼加提.IL-33 与
微粒参与动脉粥样硬化及血栓形成的研究进展[J].
临床心血管病杂志,2019,35(10):954-957.
MIRIBANI Maitusong,YUAN Yu j u a n ,
MUYASSAR Nijiati . IL-33 and microparticles are
involved in atherosclerosis and thrombosis [J]. Journal
of Clinical Cardiology, 203,35 (10) : 954-957.
[33] HUIBERS M M, TSENG C C, VAN KUIK J, et al.
The interleukin-33/ST2 pathway is expressed in the
failing human heart and associated with Pro-Fibrotic
remodeling of the myocardium[J]. Journal of Heart and
Lung Transplantation, 2018, 37(4): s304
[34] STANKOVICA M, LJUJIC B, BABIC S,et al. IL-
33/IL-33R in various types of carotid artery atherosclerotic
lesions [J]. Cytokine, 2019,120: 242-250.
相似文献/References:
[1]王丹,王养维,李辉,等.2型糖尿病患者动脉粥样硬化病变与血清CTRP3和CTRP9水平的相关性研究[J].现代检验医学杂志,2015,30(06):20.[doi:10.3969/j.issn.1671-7414.2015.06.006]
WANG Dan,WANG Yang-wei,LI Hui,et al.Correlation Research on Atherosclerotic Lesions
with Serum CTRP3,CTRP9 Level in Patients with Type 2 Diabetic[J].Journal of Modern Laboratory Medicine,2015,30(03):20.[doi:10.3969/j.issn.1671-7414.2015.06.006]
[2]赵 佳,左 林,姜小建,等.动脉粥样硬化患者高同型半胱氨酸血症与胆固醇逆向转运的关系[J].现代检验医学杂志,2019,34(06):47.[doi:10.3969 / j.issn.1671-7414.2019.06.011]
ZHAO Jia,ZUO Lin,JIANG Xiao-jian,et al.Relationship between Hyperhomocysteinemia and Reverse Cholesterol
Transport in Patients with Atherosclerosis[J].Journal of Modern Laboratory Medicine,2019,34(03):47.[doi:10.3969 / j.issn.1671-7414.2019.06.011]
[3]王 佩,米晓燕,白园园,等.强直性脊柱炎患者血清 YKL-40,Galectin-3 和 ChT 水平与疾病活动度及动脉粥样硬化进展的相关性研究[J].现代检验医学杂志,2021,36(03):52.[doi:10.3969/j.issn.1671-7414.2021.03.012]
WANG Pei,MI Xiao-yan,BAI Yuan-yuan,et al.Correlation of Serum YKL-40, Galectin-3, CHT Levels with Disease Activityand Progression of Atherosclerosis in Patients with Ankylosing Spondylitis[J].Journal of Modern Laboratory Medicine,2021,36(03):52.[doi:10.3969/j.issn.1671-7414.2021.03.012]
[4]罗星星,郑雪莲,张瑞娴,等.高血压并发动脉粥样硬化患者血清同型半胱氨酸水平与凝血功能的相关性研究[J].现代检验医学杂志,2021,36(03):144.[doi:10.3969/j.issn.1671-7414.2021.03.033]
LUO Xing-xing,ZHENG Xue-lian,ZHANG Rui-xian,et al.Correlation between Serum Homocysteine Level and Coagulation Function inPatients with Hypertension Complicated with Atherosclerosis[J].Journal of Modern Laboratory Medicine,2021,36(03):144.[doi:10.3969/j.issn.1671-7414.2021.03.033]
[5]魏 星a,陈芊颖,龚厚文b,等.基于GEO 数据库生物信息学筛选动脉粥样硬化铁死亡关键基因和实验验证[J].现代检验医学杂志,2024,39(05):112.[doi:10.3969/j.issn.1671-7414.2024.05.021]
WEI Xinga,CHEN Qianying,GONG Houwenb,et al.Screening Key Genes of Ferroptosis in Atherosclerosis Based on GEO Database Bioinformatics and Experimental Validation[J].Journal of Modern Laboratory Medicine,2024,39(03):112.[doi:10.3969/j.issn.1671-7414.2024.05.021]