[1]丁 磊,徐俊驰,邱文娜,等.结核分枝杆菌耐药机制和治疗的最新研究进展[J].现代检验医学杂志,2021,36(02):1-5.[doi:doi:10.3969/j.issn.1671-7414.2021.02.001]
 DING Lei,XU Jun-chi,QIU Wen-na,et al.Latest Research Progress on the Drug Resistance Mechanism and Treatment of Mycobacterium Tuberculosis[J].Journal of Modern Laboratory Medicine,2021,36(02):1-5.[doi:doi:10.3969/j.issn.1671-7414.2021.02.001]
点击复制

结核分枝杆菌耐药机制和治疗的最新研究进展()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第36卷
期数:
2021年02期
页码:
1-5
栏目:
述 评
出版日期:
2021-04-30

文章信息/Info

Title:
Latest Research Progress on the Drug Resistance Mechanism and Treatment of Mycobacterium Tuberculosis
文章编号:
1671-7414(2021)02-001-05
作者:
丁 磊徐俊驰邱文娜
(1.苏州市吴江区儿童医院/苏州大学附属儿童医院吴江院区检验科, 江苏苏州 215200; 2.苏州大学附属传染病医院/苏州市结核病防治重点实验室,江苏苏州 215007)
Author(s):
DING Lei XU Jun-chi QIU Wen-na et al
(1.Department of Clinical Laboratory,Children’s Hospital of Wujiang District/Wujiang Branch of Children’s Hospital Affiliated to Suzhou University ,Jiangsu Suzhou 215200,China;2.Infectious Disease Hospital of Suzhou University/Suzhou Key Laboratory of Tuberculosis Prevention and Treatment, Jiangsu Suzhou 215007,China)
关键词:
结核分枝杆菌 耐药机制靶点
分类号:
R378.911;R446
DOI:
doi:10.3969/j.issn.1671-7414.2021.02.001
文献标志码:
A
摘要:
结核病(tuberculosis,TB)是由结核分枝杆菌(Mycobacterium tuberculosis, MTB)引起的慢性传染病。近年来,结核分枝杆菌的耐药性变异尤为突出,耐药结核病已成为一个不可忽视的全球公共卫生问题。一直以来,国内外诸多研究聚焦于耐药结核发病机制及治疗方法的研究,并且不断形成新的机制理论和治疗方案。该文着重于对MTB耐药机制及治疗的最新进展进行综述,从而为耐药结核的新药研制及制定更合理的治疗方案提供参考。

参考文献/References:

[1] Word Health Organization. Global tuberculosis report 2018[Z]. Geneva: Word Health Organization, 2018.
[2] DHEDA K, CHANG K C, GUGLIELMETTI L, et al. Clinical management of adults and children with multidrug-resistant and extensively drug-resistant tuberculosis[J]. Clinical Microbiology and Infection, 2017, 23(3): 131-140.
[3] KNIGHT G M, MCQUAID C F, DODD P J, et al. Global burden of latent multidrug-resistant tuberculosis: trends and estimates based on mathematical modelling[J]. the Lancet Infectious Diseases, 2019, 19(8): 903-912.
[4] World Health Organization(2013).Definitions and reporting framework for tuberculosis[Z]. Geneva: http://www.who.int/tb/publications/definitions/en.
[5] ALMEIDA D A SILVA P E A, PALOMINO J C. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs[J]. the Journal of Antimicrobial Chemotherapy, 2011, 66(7): 1417-1430.
[6] 孔伟伟, 邢应如, 胡万发, 等.耐药结核分枝杆菌与耐药基因突变的相关性分析[J].安徽医科大学学报,2019, 54(2):329-332. KONG Weiwei, XING Yingru, HU Wanfa, et al. Correlation analysis between drug-resistant Mycobacterium tuberculosis and drug-resistant gene mutation [J]. Acta Universitatis Medicinalis Anhui, 2019, 54(2): 329-332.
[7] GYGLI S M, BORRELL S, TRAUNER A, et al. Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives[J]. FEMS Microbiology Reviews, 2017, 41(3): 354-373.
[8] ABRAHAMS K A, BESRA G S. Mycobacterial cell wall biosynthesis: a multifaceted antibiotic target[J]. Parasitology, 2018, 145(2): 116-133.
[9] GROVER N, PASKALEVA E E, MEHTA K K, et al. Growth inhibition of Mycobacterium smegmatis by mycobacteriophage-derived enzymes[J]. Enzyme and Microbial Technology, 2014, 63: 1-6.
[10] 刘巍, 李东, 曾范利, 等.分枝杆菌Rv0024诱导生物膜的形成和抗细胞壁作用研究进展[J].动物医学进展, 2017, 38(7):70-73. LIU Wei,LI Dong,ZENG Fanli, et al. Progress on Rv0024 induced biofilm formation and resistance against cell wall acting in mycobacterium [J]. Progress in Veterinary Medicine, 2017, 38(7): 70-73.
[11] PADHI A, NAIK S K, SENGUPTA S, et al. Expression of Mycobacterium tuberculosis NLPC/p60 family protein Rv0024 induce biofilm formation and resistance against cell wall acting anti-tuberculosis drugs in Mycobacterium smegmatis[J]. Microbes and Infection, 2016, 18(4): 224-236.
[12] 李启明.结核分枝杆菌耐药基因的鉴定及耐药分子机理的研究[D].重庆:西南大学, 2018. LI Qiming. The identification of Mycobacterium tuberculosis resistant genes and mechanism [D]. Chongqing: Southwest University, 2018.
[13] AYGüL A. The importance of efflux systems in antibiotic resistance and efflux pump inhibitors in the management of resistance[J].Mikrobiyol Bul, 2015,49(2):278-291.
[14] GHAJAVAND H, KAMAKOLI M K, KHANIPOUR S, et al. Scrutinizing the drug resistance mechanism of multi- and extensively-drug resistant Mycobacterium tuberculosis: mutations versus efflux pumps[J]. Antimicrobial Resistance and Infection Control,2019, 8(1):70.
[15] MACHADO D, PIRES D, PERDIG.O J, et al. Ion channel blockers as antimicrobial agents, efflux inhibitors, and enhancers of macrophage killing activity against drug resistant Mycobacterium tuberculosis[J]. PLoS One, 2016, 11(2): e0149326.
[16] 朱彬, 吴芳, 章乐, 等.结核分枝杆菌Pup-蛋白酶体系统与不同毒力结核分枝杆菌致病性的相关性研究[J].中国病原生物学杂志, 2014, 9(7):583-586, 636. ZHU Bing,WU Fang,ZHANG Le, et al. Study of the correlation between the prokaryotic ubiquitin-like protein (Pup)-proteasome system of Mycobacterium tuberculosis and the pathogenicity of Mycobacterium tuberculosis[J]. Journal of Parasitic Biology, 2014,9 (7): 583-586, 636.
[17] 张帅, 张舜文, 吴芳, 等.泛素样蛋白蛋白酶体系统对单耐异烟肼结核分枝杆菌耐药性机制研究[J].中国病原生物学杂志, 2017, 12(6):489-494. ZHANG Shuai,ZHANG Shunwen,WU Fang, et al. Study on the mechanism by which the ubiquitin-like protein-proteasome system confers drug resistance to isoniazid-monoresistant Mycobacterium tuberculosis[J]. Journal of Parasitic Biology, 2017, 12(6): 489-494.
[18] NANDAKUMAR M, NATHAN C,RHEE KY. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis[J]. Nat Commun, 2014, 5: 4306/1-4306/7.
[19] EOH H, WANG Zhe,LAYRE E, et al. Metabolic anticipation in Mycobacterium tuberculosis[J]. Nature Microbiology, 2017, 2(8):852-856.
[20] GALAGAN J E, MINCH K, PETERSON M, et al. The Mycobacterium tuberculosis regulatory network and hypoxia[J]. Nature, 2013, 499(7457): 178-183.
[21] LEE J J, LEE S K, SONG Naomi, et al. Transient drug-tolerance and permanent drug-resistance rely on the trehalose-catalytic shift in Mycobacterium tuberculosis[J]. Nature Communications, 2019, 10(1): ITC17-ITC32.
[22] RIECK B, DEGIACOMI G, ZIMMERMANN M, et al. PknG senses amino acid availability to control metabolism and virulence of Mycobacterium tuberculosis[J]. PLoS Pathogens, 2017, 13(5): e1006399.
[23] SMITH T, WOLFF K A, NGUYEN L. Molecular biology of drug resistance in Mycobacterium tuberculosis [J]. Current topics in Microbiology and Immunology, 2013, 374: 53-80.
[24] HORNG Y T, JENG W Y, CHEN Y Y, et al. Molecular analysis of codon 548 in the rpoB gene involved in Mycobacterium tuberculosis resistance to rifampin[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(3): 1542-1548.
[25] 邓叶华.湖南省结核病耐药情况分析及耐药突变位点分布[D].衡阳:南华大学,2016. DENG Yehua. Analysis of tuberculosis drug resistance and distribution of drug-resistance mutations in hunan province [D]. Hengyang: University of South China, 2016.
[26] UNISSA A N, DUSTHACKEER V N A, KUMAR M P, et al. Variants of katG, inhA and nat genes are not associated with mutations in efflux pump genes (mmpL3 and mmpL7) in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis from India[J]. Tuberculosis (Edinburgh, Scotland), 2017, 107(107): 144-148.
[27] BOLLELA V R, NAMBURETE E I, FELICIANO C S, et al. Detection of katG and inhA mutations to guide isoniazid and ethionamide use for drug-resistant tuberculosis[J]. The International Journal of Tuberculosis and Lung Disease, 2016, 20(8): 1099-1104.
[28] UNISSA A N, SUBBIAN S, HANNA L E, et al. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis[J]. Infection Genetics and Evolution, 2016, 45(45): 474-492.
[29] SALVATO R S, SCHIEFELBEIN S, BARCELLOS R B, et al. Molecular characterisation of multidrug-resistant Mycobacterium tuberculosis isolates from a high-burden tuberculosis state in Brazil[J]. Epidemiology and Infection, 2019, 147. DOI: 10.1017/S0950268819001006.
[30] World Health Organization (2008) .Guidelines for the programmatic management of drug-resistant tuberculosis [Z]. Geneva: Word Health Organization,2008.
[31] Word Health Organization(2014).WHO treatment guidelines for drug-resistant tuberculosis, 2014 update[Z].Geneva: Word Health Organization,2014.
[32] World Health Organization (2016) .WHO Treatment guidelines for drug-resistant tuberculosis 2016 Update[Z].Geneva: Word Health Organization,2016.
[33] Word Health Organization.Rapid Communication: Key changes to treatment of multidrug- and rifampicin- resietant tuberculosis (MDR/ RR-TB)[Z].Geneva: Word Health Organization,2018.
[34] Word Health Organization.WHO treatment guidelines for multidrug- and rifampicin-resistant tuberculosis 2018 update pre-final text[Z].Geneva: Word Health Organization,2018.
[35] 中华医学会结核病学分会.耐多药结核病短程治疗中国专家共识编写组.耐多药结核病短程治疗中国专家共识[J].中华结核和呼吸杂志, 2019,42 (1): 5-8. Chinese Society for Tuberculosis, Chinese Medical Association, Writing Group of Expert Consensus on Short-Course Therapy of Multi-drug Resistant Tuberculosis on China. Expert consensus on short-course therapy of multi-drug resistant tuberculosis [J]. Chinese Journal of Tuberculosis and Respiratory Diseases, 2019,42 (1) : 5-8.
[36] 中国防痨协会.耐药结核病化学治疗指南(2015)[J].中国防痨杂志, 2015, 37(5):421-469. China Anti Tuberculosis Association. Guidelines for chemotherapy of drug resistant tuberculosis (2015) [J]. Chinese Journal of Antituberculosis, 2015, 37 (5): 421-469
[37] 吴雪琼.重视并进一步探索结核病的免疫治疗[J].中国防痨杂志, 2017, 39(2):111-113. WU Xueqiong.Pay attention and explore the immunotherapy of tuberculosis [J]. Chinese Journal of Antituberculosis, 2017, 39(2): 1000-6621.
[38] CHENG Yong, SCHOREY J S. Extracellular vesicles deliver Mycobacterium RNA to promote host immunity and bacterial killing[J]. EMBO Reports, 2019, 20(3): e46613.
[39] LI Zhongxia, WANG Yizhi , LIU Xin , et al. Interleukin-32ε induces caspase-independent apoptosis mediated by N-Myc interactor in macrophages infected with Mycobacterium tuberculosis[J]. FEBS Journal, 2019, 286(3): 572-583.
[40] 中华医学会结核病学分会,抗结核药物超说明书用法专家共识编写组.抗结核药物超说明书用法专家共识[J].中华结核和呼吸杂志, 2018, 41(6):447-460. Chinese Society for Tuberculosis, Chinese Medical Association, Expert Consensus on the Use of Anti-Tuberculosis Drugs Over-Instructions. Expert consensus on the use of anti-tuberculosis drugs over-instructions[J]. Chinese Journal of Tuberculosis and Respiratory Diseases, 2018, 41(6): 447-460.
[41] SANKHE K, KHAN T, BHAVSAR C, et al. Selective drug deposition in lungs through pulmonary drug delivery system for effective management of drug-resistant TB[J]. Expert Opinion on Drug Delivery, 2019, 16(5): 525-538.
[42] BELLO-MONROY O, MATA-ESPINOSA D, ENRíQUEZ-CORTINA C, et al. Hepatocyte growth factor enhances the clearance of a multidrug-resistant Mycobacterium tuberculosis strain by high doses of conventional chemotherapy, preserving liver function[J]. Journal of Cellular Physiology,2020, 235(2): 1637-1648.
[43] CHILUKOTI N, KUMAR C M, MANDE S C. GroEL2 of Mycobacterium tuberculosis reveals the importance of structural pliability in chaperonin function[J]. Journal of Bacteriology, 2016, 198(3): 486-497.
[44] SAHU N U, SINGH V, FERRARIS D M, et al. Hit discovery of Mycobacterium tuberculosis inosine 5’-monophosphate dehydrogenase, GuaB2, inhibitors[J]. Bioorganic & Medicinal Chemistry Letters, 2018, 28(10): 1714-1718.
[45] WASHBURN A, ABDEEN S, OVECHKINA Y, et al. Dual-targeting GroEL/ES chaperonin and protein tyrosine phosphatase B (PtpB) inhibitors: A polypharmacology strategy for treating Mycobacterium tuberculosis infections[J]. Bioorganic & Medicinal Chemistry Letters, 2019, 29(13): 1665-1672.
[46] SUAREZ G V, MELUCCI GANZARAIN C D, VECCHIONE M B, et al. PD-1/PD-L1 pathway modulates macrophage susceptibility to Mycobacterium tuberculosis specific CD8(+) T cell induced death[J]. Scientific Reports, 2019, 9(1): 187.

相似文献/References:

[1]杨 健,王西娣,陈美玲,等.2013~2015年陕西地区结核分枝杆菌对利福平耐药性及rpoB基因突变的相关研究[J].现代检验医学杂志,2016,31(02):53.[doi:10.3969/j.issn.1671-7414.2016.02.016]
 YANG Jian,WANG Xi-di,CHEN Mei-ling,et al.Related Research on Resistance of Mycobacterium Tuberculosis to Rifampin and rpoB Gene Mutations in Shaanxi from 2013 to 2015[J].Journal of Modern Laboratory Medicine,2016,31(02):53.[doi:10.3969/j.issn.1671-7414.2016.02.016]
[2]许宏涛,陈东科,赖惠英.革兰阳性球菌对利奈唑胺耐药机制的研究[J].现代检验医学杂志,2016,31(06):20.[doi:10.3969/j.issn.1671-7414.2016.06.006]
 XU Hong-tao,CHEN Dong-ke,LAI Hui-ying.Study on the Linezolid Resistance Mechanism of Gram Positive Cocci[J].Journal of Modern Laboratory Medicine,2016,31(02):20.[doi:10.3969/j.issn.1671-7414.2016.06.006]
[3]张 洁,齐红伟,丁北川,等.结核分枝杆菌临床分离株对吡嗪酰胺的药物敏感性分析[J].现代检验医学杂志,2017,32(03):49.[doi:10.3969/j.issn.1671-7414.2017.03.013]
 ZHANG Jie,QI Hong-wei,DING Bei-chuan,et al.Analysis on Pyrazinamide Drug Susceptibility of Mycobacterium Tuberculosis Clinical Strains[J].Journal of Modern Laboratory Medicine,2017,32(02):49.[doi:10.3969/j.issn.1671-7414.2017.03.013]
[4]严海忠,王 娟,罗锡华,等.212~216年广东省中山社区鼠伤寒沙门菌同源性分析及对喹诺酮类药物耐药机制研究[J].现代检验医学杂志,2018,33(04):63.[doi:10.3969/j.issn.1671-7414.2018.04.016]
 YAN Hai-zhong,WANG Juan,LUO Xi-hua,et al.Study on the Homology and Resistance Mechanism of Salmonella Typhimurium to Quinolone from 2012 to 2016 in Zhongshan Community of Guangdong Province[J].Journal of Modern Laboratory Medicine,2018,33(02):63.[doi:10.3969/j.issn.1671-7414.2018.04.016]
[5]吴晓康,周维肖,冯 楠,等.影响TB-IGRA检测结果的因素分析及应对措施[J].现代检验医学杂志,2018,33(04):154.[doi:10.3969/j.issn.1671-7414.2018.04.043]
 WU Xiao-kang,ZHOU Wei-xiao,FENG Nan,et al.Analysis of Factors Influencing TB-IGRA Detection Results and Solutions[J].Journal of Modern Laboratory Medicine,2018,33(02):154.[doi:10.3969/j.issn.1671-7414.2018.04.043]
[6]谭玉华,朱应竹,江 燚,等.时间分辨免疫荧光法检测结核感染T细胞释放γ-干扰素的方法建立及初步临床应用[J].现代检验医学杂志,2018,33(06):21.[doi:10.3969/j.issn.1671-7414.2018.06.006]
 TAN Yu-hua,ZHU Ying-zhu,JIANG Yi,et al.Establishment and Preliminary Clinical Application of Interferon Gamma Release Assays for T Cells Infected With Mycobacterium Tuberculosis Based on Time-Resolved Fluoroimmunoassay[J].Journal of Modern Laboratory Medicine,2018,33(02):21.[doi:10.3969/j.issn.1671-7414.2018.06.006]
[7]田斌,文岚,刘燕萍,等.QFT-GIT对儿童肺结核临床诊断价值的meta分析[J].现代检验医学杂志,2019,34(01):89.[doi:10.3969/j.issn.1671-7414.2019.01.023]
 TIAN Bin,WEN Lan,LIU Yan-ping,et al.Clinical Usefulness of QuantiFERON-TB Gold In-Tube(QFT-GIT) Te st for Tuberculosis Diagnosis in Children:A Systematic Review[J].Journal of Modern Laboratory Medicine,2019,34(02):89.[doi:10.3969/j.issn.1671-7414.2019.01.023]
[8]李 津a,李昌锦b,杨 洁b,等.Geno-typeMTBDRplus分子线性探针杂交技术在结核病诊断与耐药性检测中的应用价值[J].现代检验医学杂志,2021,36(04):119.[doi:10.3969/j.issn.1671-7414.2021.04.025]
 LI-jina,LI Chang-jinb,YANG Jieb,et al.Value of Geno-type MTBDRplus Molecular Linear Probe Hybridization inTuberculosis Diagnosis and Drug Resistance Detection[J].Journal of Modern Laboratory Medicine,2021,36(02):119.[doi:10.3969/j.issn.1671-7414.2021.04.025]

备注/Memo

备注/Memo:
基金项目:江苏省科技项目基础研究计划(BK20161230);苏州市民生科技-关键技术应用研究(SS201879)。
作者简介:丁磊(1988-),男,本科,主管检验技师,研究方向:呼吸系统感染性疾病检测。
通讯作者:胥萍,女,主任技师,E-mail:573311485@qq.com。
更新日期/Last Update: 2021-04-10