参考文献/References:
[1] 闫欣, 商素亮, 李娜, 等. 血浆S1P 和HDL-C 表达 水平与帕金森病患者临床症状的相关性研究[J]. 现 代检验医学杂志, 2022, 37(3): 182-186, 190. YAN Xin, SHANG Suliang, LI Na, et al. Correlation between plasma S1P, HDL-C expressions levels and clinical symptoms in patients with Parkinson’s disease[J]. Journal of Modern Laboratory Medicine,2022, 37(3): 182-186, 190.
[2] MARTINEZ B, PEPLOW P V. Neuroprotection by immunomodulatory agents in animal models of Parkinson’s disease[J]. Neural Regeneration Research,2018, 13(9): 1493-1506.
[3] 胡安霞, 尹昌浩, 郭一鸣, 等. 线粒体功能障碍和 氧化应激在帕金森病中的作用[J]. 医学综述, 2021,27(15): 2929-2934. HU Anxia, YIN Changhao, GUO Yiming, et al. Role of mitochondrial dysfunction and oxidative stress in Parkinson’s disease[J]. Medical Recapitulate, 2021,27(15): 2929-2934.
[4] ELIBOL B, KILIC U. High levels of SIRT1 expression as a protective mechanism against disease-related conditions[J].Front Endocrinol ,2018 ,9:614.
[5] ZHAO Qian, TIAN Zhiyuan, ZHOU Guoyu, et al. SIRT1-dependent mitochondrial biogenesis supports therapeutic effects of resveratrol against neurodevelopment damage by fluoride[J]. Theranostics,2020, 10(11): 4822-4838.
[6] KONDO A, NONAKA A, SHIMAMURA T, et al. Long noncoding RNA JHDM1D-AS1 promotes tumor growth by regulating angiogenesis in response to nutrient starvation[J]. Molecular and Cellular Biology,2017, 37(18): e00125-17.
[7] MALMSTR?M E, KHAN H N, VEER C V , et al. The long non-coding antisense RNA JHDM1DAS1 regulates inflammatory responses in human monocytes[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 934313.
[8] FIANDACA M S, LONSER R R, ELDER J B, et al. Advancing gene therapies, methods, and technologies for Parkinson’s disease and other neurological disorders[J]. Neurologia Neurochirurgia Polska, 2020,54(3): 220-231.
[9] 孔桂香, 高丽萍, 朱华, 等. 结直肠癌患者血清外泌 体的JHDM1D-AS1 水平及临床意义[J]. 临床肿瘤学 杂志, 2021, 26(8): 729-735. KONG Guixiang, GAO Liping, ZHU Hua, et al. Level and clinical significance of serum exosomal JHDM1DAS1 in patients with colorectal cancer[J]. Chinese Clinical Oncology, 2021, 26(8): 729-735.
[10] SHI Bai, SHAO Bingyi, YANG Chonshi, et al. Upregulation of JHDM1D-AS1 protects PDLSCs from H2O2-induced apoptosis by decreasing DNAJC10 via phosphorylation of eIF2α[J]. Biochimie, 2019, 165: 48-56.
[11] LIU Luping, ZHANG Jie, PU Bo, et al. Upregulation of JHDM1D-AS1 alleviates neuroinflammation and neuronal injury via targeting miR-101-3p-DUSP1 in spinal cord after brachial plexus injury[J]. International Immunopharmacology, 2020, 89 (Pt A): 106962.
[12] WANG Cuihui, ZHANG Hongying, LI Ji. LncRNA JHDM1D-AS1 suppresses MPP+ -induced neuronal injury in Parkinson’s disease via miR-134-5p/PIK3R3 axis[J]. Neurotoxicity Research, 2021, 39(6): 1771- 1781.
[13] 王晓蕊, 朱松鑫, 温晓鸣, 等. 多巴胺代谢异常在帕 金森病相关病理变化中的作用[J]. 生理学报, 2021,73(1): 89-102. WANG Xiaorui, ZHU Songxin, WEN Xiaoming, et al. The role of abnormal dopamine metabolism in Parkinson’s disease-related pathological changes[J]. Acta Physiologica Sinica, 2021, 73(1): 89-102.
[14] 吕海燕, 侯广玉, 朱梅. MPTP 致帕金森病动物模型 的研究进展[J]. 实验动物科学, 2022, 39(4): 64-68. L? Haiyan, HOU Guangyu, ZHU Mei. Research progress of MPTP to Parkinson’s disease animal models[J]. Laboratory Animal Science, 2022, 39(4): 64-68.
[15] SHISHIDO T, NAGANO Y, ARAKI M, et al. Synphilin-1 has neuroprotective effects on MPP+- induced Parkinson’s disease model cells by inhibiting ROS production and apoptosis[J]. Neuroscience Letters, 2019, 690: 145-150.
[16] GANJAM G K, BOLTE K, MATSCHKE L A, et al. Mitochondrial damage by α-synuclein causes cell death in human dopaminergic neurons[J]. Cell Death & Disease, 2019, 10(11): 865.
[17] 龙借帆, 李翠, 高元标, 等. 联合检测血清SIRT1 和 CTRP5 水平对慢性阻塞性肺疾病急性加重期患者 预后的预测价值研究[J]. 现代检验医学杂志, 2022,37(3): 162-166, 176. LONG Jiefan, LI Cui, GAO Yuanbiao, et al. Prognostic value of combined detection of serum SIRT1 and CTRP5 levels in patients with acute exacerbation of chronic obstructive pulmonary disease[J]. Journal of Modern Laboratory Medicine, 2022, 37(3): 162-166, 176.
[18] SUN Jiangtao, LI Guifang, LIU Yiwen, et al. Targeting histone deacetylase SIRT1 selectively eradicates EGFR TKI-resistant cancer stem cells via regulation of mitochondrial oxidative phosphorylation in lung adenocarcinoma[J]. Neoplasia, 2020, 22(1): 33-46.
[19] CAMPOREZ D, BELCAVELLO L, ALMEIDA J F F, et al. Positive association of a Sirt1 variant and parameters of oxidative stress on Alzheimer's disease[J]. Neurological Sciences, 2021, 42(5): 1843- 1851.
[20] LI Xuan, FENG Ya, WANG Xixi, et al. The critical role of SIRT1 in Parkinson’s disease: mechanism and therapeutic considerations[J]. Aging and disease, 2020,11(6): 1608-1622.
[21] CADENAS S. Mitochondrial uncoupling, ROS generation and cardioprotection[J]. Biochim Biophys Acta Bioenerg, 2018, 1859(9): 940-950.
[22] SIES H, BELOUSOV V V, CHANDEL N S, et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology[J]. Nature Reviews Molecular Cell Biology, 2022, 23(7): 499-515.
[23] TAUFFENBERGER A, MAGISTRETTI P J. Reactive oxygen species: beyond their reactive behavior[J]. Neurochemical Research, 2021, 46(1): 77-87.