[1]李斯琴a,王 兴b,阿日奔吉日嘎拉b.LncRNA JHDM1D-AS1 对MPP+ 诱导的帕金森细胞模型线粒体功能的机制研究[J].现代检验医学杂志,2023,38(03):47-52+71.[doi:10.3969/j.issn.1671-7414.2023.03.009]
 LI Si-qina,WANG Xingb,ARIBENJI Rigalab.Mechanism Study of LncRNA JHDM1D-AS1 on Mitochondrial Function in MPP+-induced Parkinson’s Cell Models[J].Journal of Modern Laboratory Medicine,2023,38(03):47-52+71.[doi:10.3969/j.issn.1671-7414.2023.03.009]
点击复制

LncRNA JHDM1D-AS1 对MPP+ 诱导的帕金森细胞模型线粒体功能的机制研究()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第38卷
期数:
2023年03期
页码:
47-52+71
栏目:
论著
出版日期:
2023-05-15

文章信息/Info

Title:
Mechanism Study of LncRNA JHDM1D-AS1 on Mitochondrial Function in MPP+-induced Parkinson’s Cell Models
文章编号:
1671-7414(2023)03-047-07
作者:
李斯琴a王 兴b阿日奔吉日嘎拉b
(巴彦淖尔市医院a. 神经内科;b. 脊柱外科,内蒙古巴彦淖尔 015000)
Author(s):
LI Si-qina WANG Xingb ARIBENJI Rigalab
(a. Department of Neurology;b. Department of Spine Surgery, Bayannur Hospital,Inner Mongolia Bayannur 015000, China)
关键词:
帕金森细胞模型长链非编码RNA JHDM1D-AS1沉默调节蛋白11- 甲基-4- 苯基吡啶离子线粒体功能
分类号:
R745;R392.11
DOI:
10.3969/j.issn.1671-7414.2023.03.009
文献标志码:
A
摘要:
目的 探讨长链非编码RNA (long non-coding RNA, LncRNA) JHDM1D 反义RNA 1( JHDM1D antisense RNA1,JHDM1D-AS1) 对帕金森细胞模型线粒体功能的影响及分子机制。方法 采用1- 甲基-4- 苯基吡啶离子(MPP+)处理 SH-SY5Y 细胞构建帕金森细胞模型,记为MPP+ 组,正常细胞作为对照组(control 组)。将JHDM1D-AS1 mimic和JHDM1D-AS1 siRNA 分别转染至MPP+ 诱导的SH-SY5Y 细胞中,利用RT-PCR 检测JHDM1D-AS1 表达。流式细胞技术分析JHDM1D-AS1 表达对SH-SY5Y 细胞凋亡、线粒体膜电位及活性氧(reactive oxygen species,ROS)含量的影响。Western blot 实验分析JHDM1D-AS1 表达对沉默调节蛋白1(SIRT1)表达的影响,并利用双荧光素酶报告验证两者的靶向关系。使用SIRT1 激活剂 Resveratrol 对转染JHDM1D-AS1 mimic 的细胞进一步处理,证实JHDM1D-AS1 调控SIRT1 对帕金森细胞线粒体的影响。结果 control 组JHDM1D-AS1 相对表达为0.85±0.21,MPP+ 模型组JHDM1DAS1相对表达为1.25±0.33,较control 组增加,差异有统计学意义(t=62.017,P < 0.05)。转染JHDM1D-AS1 mimic和JHDM1D-AS1 siRNA 序列后,JHDM1D-AS1 相对表达分别为1.63±0.38 和0.72±0.17,与MPP+ 组比较差异有统计学意义(F=112.035,P < 0.05)。MPP+ 组细胞凋亡率为17.64%,JHDM1D-AS1 mimic 和JHDM1D-AS1 siRNA 组细胞凋亡率分别为25.92% 和10.74%,差异有统计学意义(F=49.052,P < 0.05)。MPP+ 组绿色荧光强度为22.20%,JHDM1D-AS1-mimic 和JHDM1D-AS1siRNA 组绿色荧光强度分别为43.97% 和10.65%,差异有统计学意义(F=57.390,P < 0.05)。流式结果显示,MPP+ 组相对荧光强度为27.58%±4.25%,JHDM1D-AS1 mimic 和JHDM1D-AS1 siRNA组相对荧光强度分别为45.10%±6.05% 和14.82%±3.70%,差异有统计学意义(F=25.794,P < 0.05)。Control 组SIRTI 蛋白表达为1.00±0.23,MPP+ 模型组SIRT1 表达下调为0.70±0.27,差异有统计学意义(t=35.740,P < 0.05)。转染JHDM1D-AS1 mimic 和JHDM1D-AS1 siRNA 后,SIRT1 表达分别为0.44±0.16 和1.34±0.22,与MPP+ 组比较差异有统计学意义(F=29.508,P < 0.05)。Target Scan 软件预测,JHDM1D-AS1 与SIRT1 序列存在结合位点,双荧光素酶实验显示,JHDM1D-AS1 过表达可降低WT- SIRT1 荧光素酶活性。JHDM1D-AS1 过表达时线粒体膜电位降低,SIRT1 激活过表达时线粒体膜电位升高,转染 JHDM1D-AS1 mimic 并激活 SIRT1 后线粒体膜电位水平回升。结论 沉默JHDM1D-AS1 表达可抑制MPP+ 诱导的SH-SY5Y 细胞凋亡,其作用机制可能与JHDM1D-AS1 靶向调控SIRT1,进而影响帕金森细胞模型线粒体功能有关。
Abstract:
Objective To investigate the effect and molecular mechanism of long non-coding RNA (LncRNA) JHDM1D antisense RNA 1(JHDM1D-AS1) on mitochondrial function in Parkinson’s cell model. Methods The SH-SY5Y cells were treated with 1-methyl-4-phenylpyridine ion (MPP+) to construct a Parkinson’s cell model, which was recorded as the MPP+ group, and the normal cells were used as the control group. JHDM1D-AS1 mimic and JHDM1D-AS1 siRNA were transfected into MPP+-induced SH-SY5Y cells, respectively, and the expression of JHDM1D-AS1 was detected by RT-PCR. Flow cytometry was used to analyze the effect of JHDM1D-AS1 expression on SH-SY5Y cell apoptosis, mitochondrial membrane potential and reactive oxygen species(ROS)content. The effect of JHDM1D-AS1 expression on SIRT1 protein expression was analyzed by Western blot experiments, and the targeting relationship between the two was verified by dual-luciferase reporter. The cells transfected with JHDM1D-AS1 mimic were further treated with SIRT1 activator Resveratrol to confirm the effect of JHDM1DAS1 on the mitochondria of Parkinson’s cells. Results The relative expression of JHDM1D-AS1 in the control group was 0.85 ± 0.21, and that in the MPP+ model group was 1.25 ± 0.33, compared to the control group,with a statistically significant difference (t=62.017, P<0.05). After transfection with JHDM1D-AS1 mimic and JHDM1D-AS1 siRNA sequences, the relative expression of JHDM1D-AS1 was 1.63 ± 0.38 and 0.72 ± 0.17 respectively, which was statistically significant compared with MPP+ group (F=112.035, P<0.05). The apoptosis rate of MPP+ group, JHDM1D-AS1 mimic and JHDM1D-AS1 siRNA group were 17.64%, 25.92% and 10.74%, respectively, and the difference was statistically significant (F=49.052, P<0.05). The green fluorescence intensity of MPP+ group was 22.20%, while that of JHDM1D-AS1mimic and JHDM1D-AS1 siRNA group was 43.97% and 10.65%, respectively, with significant difference (F=57.390, P<0.05). Flow cytometry results showed that the relative fluorescence intensity of MPP+ group was 27.58%±4.25%, JHDM1D-AS1 mimic and JHDM1D-AS1 siRNA group were 45.10%±6.05% and 14.82%±3.70 %, respectively, and the difference was statistically significant (F=25.794, P<0.05). The expression of SIRTI protein in the control group was 1.00±0.23, and the expression of SIRT1 in the MPP+ model group was 0.70±0.27, and the difference was statistically significant (t=35.740, P<0.05). After transfection with JHDM1D-AS1 mimic and JHDM1D-AS1 siRNA, the expression of SIRT1 was 0.44±0.16 and 1.34±0.22 respectively, which was statistically significant compared with MPP+ group (F=29.508, P<0.05). Target scan software predicted that there was a binding site between JHDM1DAS1 and SIRT1 sequence. Double luciferase assay showed that JHDM1D-AS1 overexpression could reduce the luciferase activity of WT-SIRT1. The mitochondrial membrane potential decreases when JHDM1D-AS1 was overexpressed. The mitochondrial membrane potential increases when SIRT1 activation was overexpressed. Mitochondrial membrane potential levels rebound after transfection of JHDM1D-AS1 mimic and activation of SIRT1. Conclusion Silencing the expression of JHDM1DAS1 could inhibit MPP+-induced apoptosis of SH-SY5Y cells, and its mechanism may be related to the targeted regulation of SIRT1 by JHDM1D-AS1, thereby affecting the mitochondrial function of the Parkinson’s cell model.

参考文献/References:

[1] 闫欣, 商素亮, 李娜, 等. 血浆S1P 和HDL-C 表达 水平与帕金森病患者临床症状的相关性研究[J]. 现 代检验医学杂志, 2022, 37(3): 182-186, 190. YAN Xin, SHANG Suliang, LI Na, et al. Correlation between plasma S1P, HDL-C expressions levels and clinical symptoms in patients with Parkinson’s disease[J]. Journal of Modern Laboratory Medicine,2022, 37(3): 182-186, 190.
[2] MARTINEZ B, PEPLOW P V. Neuroprotection by immunomodulatory agents in animal models of Parkinson’s disease[J]. Neural Regeneration Research,2018, 13(9): 1493-1506.
[3] 胡安霞, 尹昌浩, 郭一鸣, 等. 线粒体功能障碍和 氧化应激在帕金森病中的作用[J]. 医学综述, 2021,27(15): 2929-2934. HU Anxia, YIN Changhao, GUO Yiming, et al. Role of mitochondrial dysfunction and oxidative stress in Parkinson’s disease[J]. Medical Recapitulate, 2021,27(15): 2929-2934.
[4] ELIBOL B, KILIC U. High levels of SIRT1 expression as a protective mechanism against disease-related conditions[J].Front Endocrinol ,2018 ,9:614.
[5] ZHAO Qian, TIAN Zhiyuan, ZHOU Guoyu, et al. SIRT1-dependent mitochondrial biogenesis supports therapeutic effects of resveratrol against neurodevelopment damage by fluoride[J]. Theranostics,2020, 10(11): 4822-4838.
[6] KONDO A, NONAKA A, SHIMAMURA T, et al. Long noncoding RNA JHDM1D-AS1 promotes tumor growth by regulating angiogenesis in response to nutrient starvation[J]. Molecular and Cellular Biology,2017, 37(18): e00125-17.
[7] MALMSTR?M E, KHAN H N, VEER C V , et al. The long non-coding antisense RNA JHDM1DAS1 regulates inflammatory responses in human monocytes[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 934313.
[8] FIANDACA M S, LONSER R R, ELDER J B, et al. Advancing gene therapies, methods, and technologies for Parkinson’s disease and other neurological disorders[J]. Neurologia Neurochirurgia Polska, 2020,54(3): 220-231.
[9] 孔桂香, 高丽萍, 朱华, 等. 结直肠癌患者血清外泌 体的JHDM1D-AS1 水平及临床意义[J]. 临床肿瘤学 杂志, 2021, 26(8): 729-735. KONG Guixiang, GAO Liping, ZHU Hua, et al. Level and clinical significance of serum exosomal JHDM1DAS1 in patients with colorectal cancer[J]. Chinese Clinical Oncology, 2021, 26(8): 729-735.
[10] SHI Bai, SHAO Bingyi, YANG Chonshi, et al. Upregulation of JHDM1D-AS1 protects PDLSCs from H2O2-induced apoptosis by decreasing DNAJC10 via phosphorylation of eIF2α[J]. Biochimie, 2019, 165: 48-56.
[11] LIU Luping, ZHANG Jie, PU Bo, et al. Upregulation of JHDM1D-AS1 alleviates neuroinflammation and neuronal injury via targeting miR-101-3p-DUSP1 in spinal cord after brachial plexus injury[J]. International Immunopharmacology, 2020, 89 (Pt A): 106962.
[12] WANG Cuihui, ZHANG Hongying, LI Ji. LncRNA JHDM1D-AS1 suppresses MPP+ -induced neuronal injury in Parkinson’s disease via miR-134-5p/PIK3R3 axis[J]. Neurotoxicity Research, 2021, 39(6): 1771- 1781.
[13] 王晓蕊, 朱松鑫, 温晓鸣, 等. 多巴胺代谢异常在帕 金森病相关病理变化中的作用[J]. 生理学报, 2021,73(1): 89-102. WANG Xiaorui, ZHU Songxin, WEN Xiaoming, et al. The role of abnormal dopamine metabolism in Parkinson’s disease-related pathological changes[J]. Acta Physiologica Sinica, 2021, 73(1): 89-102.
[14] 吕海燕, 侯广玉, 朱梅. MPTP 致帕金森病动物模型 的研究进展[J]. 实验动物科学, 2022, 39(4): 64-68. L? Haiyan, HOU Guangyu, ZHU Mei. Research progress of MPTP to Parkinson’s disease animal models[J]. Laboratory Animal Science, 2022, 39(4): 64-68.
[15] SHISHIDO T, NAGANO Y, ARAKI M, et al. Synphilin-1 has neuroprotective effects on MPP+- induced Parkinson’s disease model cells by inhibiting ROS production and apoptosis[J]. Neuroscience Letters, 2019, 690: 145-150.
[16] GANJAM G K, BOLTE K, MATSCHKE L A, et al. Mitochondrial damage by α-synuclein causes cell death in human dopaminergic neurons[J]. Cell Death & Disease, 2019, 10(11): 865.
[17] 龙借帆, 李翠, 高元标, 等. 联合检测血清SIRT1 和 CTRP5 水平对慢性阻塞性肺疾病急性加重期患者 预后的预测价值研究[J]. 现代检验医学杂志, 2022,37(3): 162-166, 176. LONG Jiefan, LI Cui, GAO Yuanbiao, et al. Prognostic value of combined detection of serum SIRT1 and CTRP5 levels in patients with acute exacerbation of chronic obstructive pulmonary disease[J]. Journal of Modern Laboratory Medicine, 2022, 37(3): 162-166, 176.
[18] SUN Jiangtao, LI Guifang, LIU Yiwen, et al. Targeting histone deacetylase SIRT1 selectively eradicates EGFR TKI-resistant cancer stem cells via regulation of mitochondrial oxidative phosphorylation in lung adenocarcinoma[J]. Neoplasia, 2020, 22(1): 33-46.
[19] CAMPOREZ D, BELCAVELLO L, ALMEIDA J F F, et al. Positive association of a Sirt1 variant and parameters of oxidative stress on Alzheimer's disease[J]. Neurological Sciences, 2021, 42(5): 1843- 1851.
[20] LI Xuan, FENG Ya, WANG Xixi, et al. The critical role of SIRT1 in Parkinson’s disease: mechanism and therapeutic considerations[J]. Aging and disease, 2020,11(6): 1608-1622.
[21] CADENAS S. Mitochondrial uncoupling, ROS generation and cardioprotection[J]. Biochim Biophys Acta Bioenerg, 2018, 1859(9): 940-950.
[22] SIES H, BELOUSOV V V, CHANDEL N S, et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology[J]. Nature Reviews Molecular Cell Biology, 2022, 23(7): 499-515.
[23] TAUFFENBERGER A, MAGISTRETTI P J. Reactive oxygen species: beyond their reactive behavior[J]. Neurochemical Research, 2021, 46(1): 77-87.

备注/Memo

备注/Memo:
基金项目: 内蒙古自治区卫生健康委员会计划项目(202202403);内蒙古医科大学科研项目(YKD2021LH095);内蒙古自治区巴彦淖尔科技计划项目(KY202151);内蒙古自治区巴彦淖尔科技计划项目(K202139)。
作者简介:李斯琴(1984-),女,硕士,副主任医师,研究方向:脑血管疾病,专业:神经内科,E-mail:15648855750@yeah.net。
通讯作者:阿日奔吉·日嘎拉(1968-),男,主任医师,研究方向:脊柱,专业:骨科,E-mail:13847852
更新日期/Last Update: 2023-05-15