参考文献/References:
[1] CELLI B R, WEDZICHA J A. Update on clinical aspects of chronic obstructive pulmonary disease[J]. New England Journal of Medicine, 2019, 381(13):1257-1266.
[2] 崔雨佳, 刘忠.外周血嗜酸性粒细胞水平与慢性阻塞性肺疾病急性加重期患者临床预后的相关性分析[J].现代检验医学杂志, 2020, 35(3): 129-132, 164. CUI Yujia, LIU Zhong. Relationship between peripheral blood eosinophil level and the prognosis of patients with acute exacerbation of chronic obstructive pulmonary disease[J]. Journal of Modern Laboratory Medicine, 2020, 35(3): 129-132, 164.
[3] YILDIZ F. The efficacy of lung volume reduction coil treatment in patients with severe chronic obstructive pulmonary disease(COPD) type II respiratory failure[J]. International Journal of Chronic Obstructive Pulmonary Disease, 2020, 15: 479-486.
[4] YANG Yang, WANG Yujiao, WANG Fang, et al. The roles of miRNA, lncRNA and circRNA in the development of osteoporosis[J]. Biological Research, 2020, 53(1): 40.
[5] LI Xinzhi, BALLANTYNE L L, YU Ying, et al. Perivascular adipose tissue-derived extracellular vesicle miR-221-3p mediates vascular remodeling[J]. The FASEB Journal, 2019, 33(11): 12704-12722.
[6] ZHOU Chenfei, MA Jing, HUANG Lei, et al. Cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1[J]. Oncogene, 2019, 38(8): 1256-1268.
[7] CAO Yingying, WANG Zhenhua, YAN Yuqing, et al. Enterotoxigenic bacteroidesfragilis promotes intestinal inflammation and malignancy by inhibiting Exosome-Packaged miR-149-3p[J]. Gastroenterology, 2021, 161(5): 1552-1566, e12.
[8] XU Lina, GAO Haipeng, WANG Weizhen. Joint detection of miR-149-3p and hepcidin predicts the onset of obstructive sleep apnea syndrome in obese patients[J]. Laryngoscope Investigative Otolaryngology, 2022, 7(5): 1643-1651.
[9] 中华医学会呼吸病学分会慢性阻塞性肺疾病学组,中国医师协会呼吸医师分会慢性阻塞性肺疾病工作委员会. 慢性阻塞性肺疾病诊治指南(2021 年修订版)[J]. 中华结核和呼吸杂志, 2021, 44(3): 170-205. Chronic Obstructive Pulmonary Disease Group of Chinese Thoracic Society, Chronic Obstructive Pulmonary Disease Committee of Chinese Association of Chest Physician. Guidelines for the diagnosis and management of chronic obstructive pulmonary disease (revised version 2021) [J]. Chinese Journal of Tuberculosis and Respiratory Diseases, 2021, 44(3):170-205.
[10] 阎锡新.呼吸衰竭[M]. 2 版.北京:人民卫生出版社,2016:112-145. YAN Xixin. Respiratory failure[M].2th Ed. Beijing: People’s Medical Publishing House, 2016: 112-145.
[11] 李若倩, 刘云, 李若然.外周血红细胞分布宽度和超敏C- 反应蛋白水平检测在慢性阻塞性肺疾病诊断中的价值分析[J].现代检验医学杂志, 2020,35(3): 123-125, 137. LI Ruoqian, LIU Yun, LI Ruoran. Value of detecting peripheral blood red blood cell distribution width and high sensitivity C reactive protein in the diagnosis of chromic obstructive pulmonary disease[J]. Journal of Modern Laboratory Medicine, 2020, 35(3): 123-125, 137.
[12] AGUST? A. HOGG J C. Update on the pathogenesis of chronic obstructive pulmonary disease[J]. New England Journal of Medicine, 2019, 381(13): 1248-1256.
[13] 陈志勇, 罗世林, 张健, 等. 慢阻肺患者血清IL-17,IL-27 和IL-33 水平表达及与不同临床分期FeNO和肺功能的相关性研究[J]. 现代检验医学杂志,2021, 36(4): 152-155, 166. CHEN Zhiyong, LUO Shilin, ZHANG Jian, et al. Expression of serum IL-17, IL-27 and IL-33 in patients with chronic obstructive pulmonary disease and its correlation with FeNO and lung function in different clinical stages[J]. Journal of Modern Laboratory Medicine, 2021, 36(4): 152-155, 166.
[14] 龙借帆, 李翠, 高元标, 等.联合检测血清SIRT1 和CTRP5 水平对慢性阻塞性肺疾病急性加重期患者预后的预测价值研究[J]. 现代检验医学杂志, 2022,37(3): 162-166, 176. LONG Jiefan, LI Cui, GAO Yuanbiao, et al. Prognostic value of combined detection of serum SIRT1 and CTRP5 levels in patients with acute exacerbation of chronic obstructive pulmonary disease[J]. Journal of Modern Laboratory Medicine, 2022, 37(3): 162-166, 176.
[15] 胡小燕, 郑晓, 嵇华夏, 等.血清PCT 与BNP 水平联合检测对慢性阻塞性肺疾病急性加重期并发心力衰竭的临床诊断价值[J]. 现代检验医学杂志, 2021,36(3): 128-131, 136. HU Xiaoyan, ZHENG Xiao, JI Huaxia, et al. Clinical diagnostic value of combined detection of serum PCT and BNP levels in patients with acute exacerbation of chronic obstructive pulmonary disease complicated with heart failure[J]. Journal of Modern Laboratory Medicine, 2021, 36(3): 128-131, 136.
[16] CHEN Qihua, DENG Na, LU Ke, et al. Elevated plasma miR-133b and miR-221-3p as biomarkers for early Parkinson’s disease[J]. Scientific Reports, 2021, 11(1): 15268.
[17] CA?AS J A, RODRIGO-MU?OZ J M, SASTRE B, et al. MicroRNAs as potential regulators of immune response networks in asthma and chronic obstructive pulmonary disease[J]. Frontiers in Immunology, 2021, 11(1): 608666-608675.
[18] 宫柏琪, 张琳, 王娜, 等.AMI 患者血浆miR-221-3p,miR-208b-3p 表达水平与心肌损伤标志物及左心功能的关系[J]. 河北医药, 2021, 43(14): 2106-2109. GONG Baiqi, ZHANG Lin, WANG Na, et al. Correlation between the expression level of miR2213p, miR208b-3p and the markers of myocardial injury as well as left ventricular function in patients with acute myocardial infarction[J]. Hebei Medical Journal, 2021, 43(14): 2106-2109.
[19] SHEN Yahui, LU Huiyu, SONG Guixian. MiR-221-3p and miR-92a-3p enhances smoking-induced inflammation in COPD [J]. Journal of Clinical Laboratory Analysis, 2021, 35(7): e23857.
[20] ZHANG Xiuli, WANG Yaping, HE Xiang, et al. Diagnosis of chronic obstructive pulmonary disease and regulatory mechanism of miR-149-3p on alveolar inflammatory factors and expression of surfactant proteins a(SP-A)and D(SP-D)on lung surface mediated by Wnt pathway[J]. Computational Intelligence and Neuroscience, 2022(1): 7205016.
[21] LEI Zhenwu, GUO Hui, ZOU Shenchun, et al. Long noncoding RNA maternally expressed gene regulates cigarette smoke extract induced lung inflammation and human bronchial epithelial apoptosis via miR1493p[J]. Experimental and Therapeutic Medicine, 2021, 21(1): 60-70.
[22] 刘建军.改良DECAF 评分、DECAF 评分、CAPS评分及APACHE Ⅱ评分对慢性阻塞性肺疾病急性加重合并呼吸衰竭患者预后的预测价值对比分析[J].系统医学, 2019, 4(19): 13-16. LIU Jianjun. Comparative analysis of predictive value of modified DECAF score, DECAF score, CAPS score and APACHE II score in patients with acute exacerbation of chronic obstructive pulmonary disease and respiratory failure [J]. Systems Medicine, 2019, 4(19): 13-16.