参考文献/References:
[1] 中国抗癌协会妇科肿瘤专业委员会. 宫颈癌诊断与治疗指南( 第四版)[J]. 中国实用妇科与产科杂志,2018, 34(6):613-622. Committee of Gynecological Oncology of Chinese Anti-Cancer Association. Guidelines for the diagnosis and treatment of cervical cancer (4th Edition)[J]. Chinese Journal of Practical Gynecology and Obstetrics, 2018, 34(6): 613-622.
[2] 黄明春. 7401 例宫颈膜式液基薄层细胞学技术的临床应用结果分析[J]. 现代检验医学杂志, 2006,21(3): 42-43. HUANG Mingchun. Analysis of the clinical results of 7401 cases of cervical membrane-based liquid-based thin-layer cytology [J]. Journal of Modern Laboratory Medicine, 2006, 21(3): 42-43.
[3] BERA K, SCHALPER K A, RIMM D L, et al. Artificial intelligence in digital pathology-new tools for diagnosis and precision oncology[J]. Nature Reviews Clinical Oncology, 2019, 16(11): 703-715.
[4] GEORGE R S, HTOO A, CHENG M, et al. Artificial intelligence in prostate cancer: definitions,current research,and future directions[J]. Urologic Oncology, 2022, 40(6): 262-270.
[5] HE Tingshan, LI Jing, WANG Peng, et al. Artificial intelligence predictive system of individual survival rate for lung adenocarcinoma[J]. Computational and Structural Biotechnology Journal, 2022, 20: 2352-2359.
[6] 何文军, 李曼, 李涛, 等.基于血细胞形态识别的自动检测系统的研发[J]. 现代检验医学杂志, 2019,34(2): 104-108. HE Wenjun, LI Man, LI Tao, et al. Study on automatic detection system base on blood cell morphology recognition[J]. Journal of Modern Laboratory Medicine, 2019, 34(2): 104-108.
[7] HOU Xin, SHEN Guangyang, ZHOU Liqiang, et al. Artificial intelligence in cervical cancer screening and diagnosis [J]. Frontiers in Oncology, 2022, 12: 851367.
[8] NAYAR R, WILBUR D C. The bethesda system for reporting cervical cytology: a historical perspective[J].Acta Cytologica, 2017, 61(4/5): 359-372.
[9] BAO Heling, SUN Xiaorong, ZHANG Yi, et al. The artificial intelligence-assisted cytology diagnostic system in large-scale cervical cancer screening: a population-based cohort study of 0.7 million women[J].Cancer Medicine, 2020, 9(18):6896-6906.
[10] 胡爱侠, 朱琳, 贺慧, 等.人工智能辅助分析技术在子宫颈细胞癌前病变筛查中的应用价值[J]. 临床与实验病理学杂志, 2022, 38(1): 27-30. HU Aixia, ZHU Lin, HE Hui, et al. Value about artificial intelligence assisted analysis technology for screening cervical precancerous lesions[J]. Chinese Journal of Clinical and Experimental Pathology, 2022, 38(1): 27-30.
[11] TANG Hongping, CAI De, KONG Yanqing, et al. Cervical cytology screening facilitated by an artificial intelligence microscope: a preliminary study[J]. Cancer Cytopathology, 2021, 129(9): 693-700.
[12] 李雪, 石中月, 杨志明, 等.人工智能辅助分析在宫颈液基薄层细胞学检查中的应用价值[J].首都医科大学学报, 2020, 41(3): 360-363. LI Xue, SHI Zhongyue, YANG Zhiming, et al. Value about artificial intelligence-assisted liquid-based thin-layer cytology for cytology cervical cancer screening[J]. Journal of Capital Medical University, 2020, 41(3): 360-363.
[13] GUPTA R, SODHANI P, MEHROTRA R, et al. Cervical high-grade squamous intraepithelial lesion on conventional cytology: cytological patterns, pitfalls, and diagnostic clues[J]. Diagnostic Cytopathology, 2019, 47(12): 1267-1276.
[14] WON K H, LEE J Y, CHO H Y, et al. Impact of age on the false negative rate of human papillomavirus DNA test in patients with atypical squamous cells of undetermined significance[J]. Obstetrics Gynecology Science, 2015, 58(2): 117-123.
[15] WATSON M, BENARD V, LIN L, et al. Provider management of equivocal cervical cancer screening results among underserved women, 2009-2011: follow-up of atypical squamous cells of undetermined significance[J]. Cancer Causes Control, 2015, 26(5):759-764.
[16] LEE Y, LEE C, PARK I A, et al. Cytomorphological features of hyperchromatic crowded groups in Liquid-Based cervicovaginal cytology: a single institutional experience[J]. Journal of Pathology and Translational Medicine, 2019, 53(6): 393-398.
[17] GUPTA S, SODHANI P, CHACHRA K L, et al. Outcome of “atypical squamous cells” in a cervical cytology screening program:implications for follow up in resource limited settings[J]. Diagnostic Cytopathology, 2007, 35(11): 677-680.
[18] GOMES DE OLIVEIRA G, ELEUT?RIO R M N, SILVEIRA GON?ALVES A K, et al. Atypical squamous cells in liquid-based cervical cytology: microbiology, inflammatory infiltrate, and human papillomavirus-DNA testing[J]. Acta Cytol, 2018, 62(1):28-33.
[19] OBERMEYER Z, EMANUEL E J. Predicting the future-big data,machine learning,and clinical medicine[J].The New England Journal of Medicine, 2016, 375(13): 1216-1219.
[20] 《宫颈液基细胞学人工智能辅助诊断数据集标注规范与质量控制专家共识(2022 版)》编写组. 宫颈液基细胞学人工智能辅助诊断数据集标注规范与质量控制专家共识(2022 版)[J]. 中华病理学杂志,2022, 51(12): 1205-1209. The Drafting Group of Chinese Expert Consensus on Label Criterion and Quality Control of Artificial Intelligence-assisted Liquid-based Cervical Cytology Diagnosis Dataset (2022 version). Expert consensus on label criterion and quality control of artificial intelligence-assisted liquid-based cervical cytology diagnosis dataset (2022 version) [J]. Chinese Journal of Pathology, 2022, 51(12): 1205-1209.