参考文献/References:
[1] 中国抗癌协会乳腺癌专业委员会. 中国乳腺癌筛查与早期诊断指南[J]. 中国癌症杂志, 2022, 32(4):363-372. China Anti-Cancer Association, Committee of Breast Cancer Society. Screening and early diagnosis of breast cancer in China:a practice guideline[J]. China Oncology, 2022, 32(4): 363-372.
[2] ROSSI L, MAZZARA C, PAGANI O. Diagnosis and treatment of breast cancer in young women[J]. Current Treatment Options in Oncology, 2019, 20(12): 86.
[3] RIX A, PIEPENBROCK M, FLEGE B, et al. Effects of contrast-enhanced ultrasound treatment on neoadjuvant chemotherapy in breast cancer[J]. Theranostics, 2021, 11(19): 9557-9570.
[4] 姚礼忠, 南玉奎, 张志强, 等. 超声造影参数联合血清微小核糖核酸-206 水平在激素敏感性转移性前列腺癌患者新辅助化疗效果评估中的应用[J]. 中国性科学, 2022, 31(5): 1-4. YAO Lizhong, NAN Yukui, ZHANG Zhiqiang, et al. Contrast-enhanced ultrasound parameters combined with serum miR-206 level in evaluating the effect of neoadjuvant chemotherapy in patients with metastatic hormone sensitive prostate cancer [J]. Chinese Journal of Human Sexuality, 2022, 31(5): 1-4.
[5] YOKOYAMA A, HASEGAWA T, HIRAGA T, et al. Altered immunolocalization of FGF23 in murine femora metastasized with human breast carcinoma MDA-MB-231 cells[J]. Journal of Bone and Mineral Metabolism, 2021, 39(5): 810-823.
[6] LIN Yan, LIN Fengkang, ANUCHAPREEDA S, et al. Effect of miR-133b on progression and cisplatin resistance of triple-negative breast cancer through FGFR1-Wnt-β-catenin axis[J]. American Journal of Translational Research, 2021, 13(6): 5969-5984.
[7] 徐超, 韩正祥, 周雷, 等. 三阴性乳腺癌组织中FGFR1 蛋白水平及Ki67 表达与微血管密度的关系分析[J]. 实用老年医学, 2021, 35(8): 833-836. XU Chao, HAN Zhengxiang, ZHOU Lei, et al. Relationship of FGFR1 protein level and Ki67 expression with microvessel density in triple negative breast cancer tissue[J]. Practical Geriatrics, 2021, 35(8):833-836.
[8] 中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2019 年版)[J]. 中国癌症杂志,2019, 29(8): 609-680. China Anti-Cancer Association, Committee of Breast Cancer Society. Guidelines and specifications for diagnosis and treatment of breast cancer of China Anti Cancer Association(2019 version)[J]. China Oncology, 2019, 29(8): 609-680.
[9] 刘晓鑫, 白春峡, 伏玉. 乳腺癌组织MAL2 和IGF-1R 蛋白表达与病理特征及预后的相关性研究[J]. 现代检验医学杂志, 2022, 37(3): 43-46, 68. LIU Xiaoxin, BAI Chunxia, FU Yu. Expression of MAL2 and IGF-1R protein in breast cancer and its correlation with pathological features and prognosis[J].Journal of Modern Laboratory Medicine, 2022, 37(3): 43-46, 68.
[10] 欧阳航, 陈德波, 骆时木, 等. 乳腺癌晚期患者循环肿瘤细胞表型Vimentin mRNA 与AKT1 mRNA 水平表达对临床疗效评估的价值研究[J]. 现代检验医学杂志, 2021, 36(5): 73-76, 82. OUYANG Hang, CHEN Debo, LUO Shimu, et al. Value of circulating tumor cell phenotype Vimentin mRNA and AKT1 mRNA expression in the evaluation of clinical efficacy in patients with advanced breast cancer[J]. Journal of Modern Laboratory Medicine, 2021, 36(5): 73-76, 82.
[11] 鲍志国, 杜森, 周青, 等.DWI 表观扩散系数与乳腺癌病理特征、微血管生成的关系分析[J]. 中国CT和MRI 杂志, 2020, 18(10): 62-65. BAO Zhiguo, DU Sen, ZHOU Qing, et al. Analysis of relationship between apparent diffusion coefficient of DWI and pathological features and microangiogenesis of breast cancer[J]. Chinese Journal of CT and MRI, 2020, 18(10): 62-65.
[12] CHEN Jing, LI Chunxiao, SHAO Sihui, et al. The association between conventional ultrasound and contrast-enhanced ultrasound appearances and pathological features in small breast cancer[J]. Clinical Hemorheology and Microcirculation, 2022, 80(4): 413-422.
[13] 李梅, 郑绥丽, 刘楚. 超声造影TIC 定量参数在乳腺癌分期早期诊断中的应用[J]. 中南医学科学杂志,2022, 50(3): 388-390, 394. LI Mei, ZHENG Suili, LIU Chu. Application value of TIC quantitative parameters of contrast-enhanced ultrasound in the early diagnosis of clinical staging of breast cancer[J]. Medical Science Journal of Central South China, 2022, 50(3): 388-390, 394.
[14] 马艳红, 阮青青, 梁志, 等. 超声造影定量参数联合血清微小RNA-139-5p, 微小RNA-15a 检测在卵巢浆液性囊腺癌病人中应用价值[J]. 安徽医药, 2022,26(1): 94-98. MA Yanhong, RUAN Qingqing, LIANG Zhi, et al. Value and significance of the quantitative parameters of contrast-enhanced ultrasound combined with the detection of serum microRNA-139-5p and microRNA-15a in patients with ovarian serous cystadenocarcinoma[J]. Anhui Medical and Pharmaceutical Journal, 2022, 26(1): 94-98.
[15] EWENDT F, FEGER M, F?LLER M. Role of fibroblast growth factor 23 (FGF23) and αKlotho in cancer[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 601006.
[16] ABRAMSON M, GLEZERMAN I G, SRINIVASAN M, et al. Hypophosphatemia and FGF23 tumor-induced osteomalacia in two cases of metastatic breast cancer[J]. Clinical Nephrology, 2021, 95(2): 104-111.
[17] 黄秋晗, 姚雷, 相娜娜, 等. 成纤维细胞生长因子23在胃癌中的表达及作用研究[J]. 现代生物医学进展,2019, 19(4): 751-754. HUANG Qiuhan, YAO Lei, XIANG Nana, et al. Expression and function of fibroblast growth factor 23 in gastric cancer[J]. Progress in Modern Biomedicine, 2019, 19(4): 751-754.
[18] QUINTELA-FANDINO M, APALA J V, MALON D, et al. Nintedanib plus letrozole in early breast cancer: a phase 0/I pharmacodynamic, pharmacokinetic, and safety clinical trial of combined FGFR1 and aromatase inhibition[J]. Breast Cancer Research, 2019, 21(1): 69.
[19] 周昕, 牛恺文, 邓泽义.FGFR1 对头颈部鳞状细胞癌细胞增殖和凋亡影响机制研究[J]. 中华肿瘤防治杂志, 2022, 29(9): 635-643. ZHOU Xin, NIU Kaiwen, DENG Zeyi. Effect of FGFR1 on cell proliferation and apoptosis in head and neck squamous cell carcinoma[J]. Chinese Journal of Cancer Prevention and Treatment, 2022, 29(9): 635-643.
[20] JIANG Jing, LIN Hui, SHI Shenghong, et al. Hsa_circRNA_ 0000518 facilitates breast cancer development via regulation of the miR-326/FGFR1 axis[J]. Thoracic Cancer, 2020, 11(11): 3181-3192.
[21] 杨斌, 管建, 姜娟娟. 非小细胞肺癌患者血清中纤维母细胞生长因子受体表达意义及其与血清肿瘤标志物的相关性研究[J]. 标记免疫分析与临床, 2020,27(2): 229-234. YANG Bin, GUAN Jian, JIANG Juanjuan. The expression of fibroblast growth factor receptor in serum of patients with lung cancer and its correlation with serum tumor markers[J]. Labeled Immunoassays and Clinical Medicine, 2020, 27(2): 229-234.
[22] 穆珺玉, 李杰慧, 秦瑶, 等. 血清骨桥蛋白、胸苷激酶1、成纤维细胞生长因子受体4 与局部晚期宫颈癌患者新辅助化疗疗效的关系研究[J]. 现代生物医学进展, 2022, 22(18): 3504-3508. MU Junyu, LI Jiehui, QIN Yao, et al. Relationship study between serum osteopontin,thymidine kinase 1,fibroblast growth factor receptor 4 and neoadjuvant chemotherapy in patients with local advanced cervical cancer[J]. Progress in Modern Biomedicine, 2022, 22(18): 3504-3508.
[23] SERVETTO A, KOLLIPARA R, FORMISANO L, et al. Nuclear FGFR1 regulates gene transcription and promotes antiestrogen resistance in ER+ breast cancer[J]. Clinical Cancer Research, 2021, 27(15): 4379-4396.
[24] DRAGO J Z, FORMISANO L, JURIC D, et al. FGFR1 amplification mediates endocrine resistance but retains TORC sensitivity in metastatic hormone receptor-positive (HR+) breast cancer[J]. Clinical Cancer Research, 2019, 25(21): 6443-6451.