参考文献/References:
[1] CHUNG M K, REFAAT M, SHEN W K, et al. Atrial fibrillation: JACC council perspectives[J]. Journal of the American College of Cardiology, 2020, 75(14):1689-1713.
[2] 薄小雯, 左嵩, 蒋超, 等. 空腹血糖水平与非瓣膜性心房颤动患者血栓栓塞事件发生的关系[J]. 中华心血管病杂志, 2022, 50(3): 243-248. BO Xiaowen, ZUO Song, JIANG Chao, et al. The relationship between fasting blood glucose level and thromboembolism events in patients with non-valvular atrial fibrillation[J]. Chinese Journal of Cardiology,2022, 50(3): 243-248.
[3] BLACK-MAIER E, STEINBERG B A, TRULOCK K M, et al. Effectiveness of catheter ablation of atrial fibrillation according to heart failure etiology[J].Journal of Arrhythmia, 2020, 36(1): 84-92.
[4] OSAKA Y, ONO Y, TAO S, et al. Feasibility and safety of uninterrupted apixaban in patients undergoing radiofrequency ablation for atrial fibrillation[J]. Journal of Interventional Cardiac Electrophysiology, 2020,58(1): 35-41.
[5] SHEN Fangyuan, LIU Yefang, WANG Lanchun, et al. Identification of HIV-1-specific cascaded microRNAmRNA regulatory relationships by parallel mRNA and microRNA expression profiling with AIDS patients after antiviral treatment[J]. Medicine (Baltimore), 2021,100(44): e27428.
[6] 肖西洋, 金光, 崔鹤松. miRNAs 在肝细胞癌发病机制中的作用研究进展[J]. 延边大学医学学报, 2021,44(3): 232-234. XIAO Xiyang, JIN Guang, CUI Hesong. Progress in the role of miRNAs in the pathogenesis of hepatocellular carcinoma[J]. Journal of Medical Science Yanbian University, 2021, 44(3): 232-234.
[7] WANG Wei, ZHENG Hao. Myocardial infarction: the protective role of miRNAs in myocardium pathology[J].Frontiers in Cardiovascular Medicine, 2021, 8:631817.
[8] 王强利, 赵玥, 国海东, 等. 心肌特异性microRNA在心肌梗死中作用的研究进展[J]. 基础医学与临床,2021, 41(8): 1190-1194. WANG Qiangli, ZHAO Yue, GUO Haidong, et al. Progress on the role of cardiac-specific microRNA in myocardial infarction[J]. Basic & Clinical Medicine,2021, 41(8): 1190-1194.
[9] 汪尊冬. 微小RNA 在心房颤动中的研究进展[J]. 重庆医学, 2022, 51(10): 1783-1787, 1793. WANG Zundong. Research progress of microRNAs in atrial fibrillation[J]. Chongqing Medicine, 2022,51(10): 1783-1787, 1793.
[10] 葛均波, 徐永健. 内科学 [M]. 8 版. 北京:人民卫生出版社, 2013: 147-149. GE Junbo, XU Yongjian. Internal medicine[M]. 8th Ed. Beijing: People’s Medical Publishing House, 2013:147-149.
[11] 李庆勇, 袁向珍, 汤宝鹏, 等. 心房颤动患者血清TGF-β1, Omentin-1, Gal-3 水平变化及与心房纤维化的关系[J]. 中国循证心血管医学杂志, 2021, 13(5):554-557, 561. LI Qingyong, YUAN Xiangzhen, TANG Baopeng, et al. Changes of serum TGF-β1,Omentin-1,Gal-3 levels in patients with atrial fibrillation and their relationship with atrial fibrosis [J]. Chinese Journal of Evidence-Based Cardiovascular Medicine, 2021, 13(5): 554-557, 561.
[12] 温旭涛, 杨希立, 舒建坤, 等. 术前血清可溶性ST2水平对心房颤动射频消融术后复发的预测价值研究[J]. 现代检验医学杂志, 2022, 37(3): 191-197. WEN Xutao, YANG Xili, SHU Jiankun, et al. Value of preoperative serum soluble ST2 level in predicting recurrence of atrial fibrillation after radiofrequency ablation[J]. Journal of Modern Laboratory Medicine,2022, 37(3): 191-197.
[13] SHIGETA T, YAMAUCHI Y, ODA A, et al. Prevalence of gastric hypomotility after additional cryoballoon ablation of the left atrial roof[J]. Pacing and Clinical Electrophysiology, 2022, 45(1): 5-13.
[14] 冶敦清, 祁国荣, 路霖, 等. MicroRNA-155/FOXO3a在心脏手术后心房颤动患者心房组织中的表达及与心房纤维化的关系[J]. 中国现代医学杂志, 2020,30(8): 40-44. YE Dunqing, QI Guorong, LU Lin, et al. Expression of miR-155/FOXO3a axis in atrial tissue of patients with atrial fibrillation after cardiac surgery and its relationship with atrial fibrosis[J]. China Journal of Modern Medicine, 2020, 30(8): 40-44.
[15] LEHMANN T P, GUDERSKA U, KA?EK K, et al. The regulation of collagen processing by miRNAs in disease and possible implications for bone turnover[J].International Journal of Molecular Sciences, 2021,23(1): 91.
[16] 汪盛平, 何雨鲜, 梁涛, 等. 循环中外泌体miRNAs在心房颤动中的研究进展[J]. 四川医学, 2021,42(8): 846-850. WANG Shengping, HE Yuxian, LIANG Tao, et al. Research progress of circulating exocrine miRNAs in atrial fibrillation[J]. Sichuan Medical Journal, 2021,42(8): 846-850.
[17] HAN Xinyuan, WANG Shunda, YONG Zhijun, et al. MiR-29b ameliorates atrial fibrosis in rats with atrial fibrillation by targeting TGF-β-RΙ and inhibiting the activation of smad-2/3 pathway[J]. Journal of Bioenergetics and Biomembranes, 2022, 54(2): 81-91.
[18] YU C hengchia, LIAO Yiwen, HSIEH Peiling, et al. Targeting lncRNA H19/miR-29b/COL1A1 axis impedes myofibroblast activities of precancerous oral submucous fibrosis[J]. International Journal of Molecular Sciences, 2021, 22(4): 2216.
[19] 高雅, 高俊峰. 非瓣膜性心房颤动患者血miR-29b,miR-150, miR-223 表达与心功能的相关性[J]. 中南医学科学杂志, 2022, 50(3): 373-376. GAO Ya, GAO Junfeng. Correlation of blood miR-29b,miR-150, miR-223 expression and cardiac function in patients with nonvalvular atrial fibrillation[J]. Medical Science Journal of Central South China, 2022, 50(3):373-376.
[20] 贾伟佳, 赵楠楠, 于晓迪, 等. MicroRNA-135b 在ARVC 中的表达及其调控机制[J]. 黑龙江医药科学,2019, 42(3): 40-42. JIA Weijia, ZHAO Nannan, YU Xiaodi, et al. Expression of microRNA-135b in ARVC and its regulation mechanism[J]. Heilongjiang Medicine and Pharmacy, 2019, 42(3): 40-42.
[21] WANG Hongtao, JIANG Wei, HU Yanchao, et al. Quercetin improves atrial fibrillation through inhibiting TGF-β/smads pathway via promoting miR-135b expression[J]. Phytomedicine, 2021, 93: 153774.
[22] WIEDMANN F, KRAFT M, KALLENBERGER S,et al. MicroRNAs regulate TASK-1 and are linked to myocardial dilatation in atrial fibrillation[J]. Journal of the American Heart Association, 2022, 11(7): e023472.
[23] GUO Feng, TANG Chengchun, HUANG Bo, et al. LncRNA H19 drives proliferation of cardiac fibroblasts and collagen production via suppression of the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis[J].Molecules and Cells, 2022, 45(3): 122-133.