[1]李阳昱,杨 旭,陈孝红,等.耐碳青霉烯类肺炎克雷伯菌的耐药机制和治疗策略研究进展[J].现代检验医学杂志,2023,38(06):191-199.[doi:10.3969/j.issn.1671-7414.2023.06.035]
 LI Yangyu,YANG Xu,CHEN Xiaohong,et al.Research Progress on Resistance Mechanisms and Therapy Strategies of Carbapenem Resistant Klebsiella Pneumonia[J].Journal of Modern Laboratory Medicine,2023,38(06):191-199.[doi:10.3969/j.issn.1671-7414.2023.06.035]
点击复制

耐碳青霉烯类肺炎克雷伯菌的耐药机制和治疗策略研究进展()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第38卷
期数:
2023年06期
页码:
191-199
栏目:
综述
出版日期:
2023-11-15

文章信息/Info

Title:
Research Progress on Resistance Mechanisms and Therapy Strategies of Carbapenem Resistant Klebsiella Pneumonia
文章编号:
1671-7414(2023)06-191-09
作者:
李阳昱杨 旭陈孝红陈 莉和平安吕 梅李庆蓉
(昆明医科大学第二附属医院检验科,昆明 650032)
Author(s):
LI Yangyu YANG Xu CHEN Xiaohong CHEN Li HE Ping’an L? Mei LI Qingrong
(Department of Clinical Laboratory,the Second Affiliated Hospital of Kunming Medical University,Kunming 650032,China)
关键词:
耐碳青霉烯类肺炎克雷伯菌耐药机制抗生素治疗替代策略
分类号:
R446.5;R378.996
DOI:
10.3969/j.issn.1671-7414.2023.06.035
文献标志码:
A
摘要:
耐碳青霉烯类肺炎克雷伯菌(carbapenem resistant Klebsiella pneumoniae,CRKP)在临床分离株中检出率日益增加,并且耐药机制复杂,产碳青霉烯酶是CRKP 主要的耐药机制。目前临床治疗CRKP 感染以抗生素为主,随着传统抗生素有效性下降,细菌耐药率上升,治疗难度加大,病死率高,CRKP 感染已成为全球重大公共卫生问题之一,国内外研究及指南均推荐以碳青霉烯类、替加环素或多黏菌素为基础的联合方案治疗。新开发的广谱β- 内酰胺类抗生素/ 强效β-内酰胺酶抑制剂复方制剂包括头孢他啶/ 阿维巴坦、氨曲南/ 阿维巴坦、美罗培南/ 韦博巴坦以及亚胺培南/ 雷利巴坦等,对CRKP 感染更有效,副作用和毒性更小,但新型抗生素研发周期长,且CRKP 又易获得多重耐药性。因此,一些抗生素替代策略如抗菌肽、候选疫苗、噬菌体疗法和宿主免疫学等正在被广泛研究和开发。该文综述了CRKP 的耐药机制及治疗策略研究进展,旨在为临床治疗和控制CRKP 感染带来新思路,有助于开发新型抗生素。
Abstract:
The detection rate of carbapenem resistant Klebsiella pneumoniae (CRKP) in clinical isolates is increasing. The resistance mechanism of CRKP is complex, in with the main resistance mechanism is the production of carbapenemase. At present, antibiotics are the main clinical treatment for CRKP infection. As the effectiveness of traditional antibiotics declines, the bacterial resistance rate increases. It is difficult to treat infection caused by CRKP, and with high mortality rate. CRKP infection has become one of the major public health issues in the world. Domestic and foreign studies and guidelines recommend the combined treatment regimen based on carbapenems, tigacycline or polymyxin. Novel broad-spectrum beta-lactam antibiotics/ potent beta-lactamase inhibitors including ceftazidime-avebatam, aztreonam-avebatam, meropenem-verbobatam and imipenemralebatam are more effective against CRKP infection with fewer side effects and toxicity. However, antibiotics have the long development cycle, CRKP is easy to acquire multiple drug resistance. In addition, some antibiotic replacement strategies such as antimicrobial peptides, various vaccine candidates, phage therapy and host immunology have been extensively studied. The article reviews the research progress on resistance mechanisms and therapy strategies of CRKP, aiming to bring new ideas for clinical treatment and control of CRKP infection, and contribute to the development of novel antimicrobial drugs.

参考文献/References:

[1] OPOKU-TEMENG C, MALACHOWA N, KOBAYASHI S D, et al. Innate host defense against Klebsiella pneumoniae and the outlook for development of immunotherapies[J]. Journal of Innate Immunity, 2022,14(3): 167-181.
[2] MACKENZIE F M, FORBES K J, DORAI-JOHN T,et al. Emergence of a carbapenem-resistant Klebsiella pneumoniae[J]. Lancet, 1997, 350(9080): 783.
[3] European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA (EARS-Net)-annual epidemiological report 2020[Z]. Sweden: Stockholm, 2022.
[4] 胡付品, 郭燕, 朱德妹, 等. 2021 年CHINET 中国细菌耐药监测[J]. 中国感染与化疗杂志, 2022, 22(5):521-530. HU Fupin, GUO Yan, ZHU Demei, et al. CHINET surveillance of antimicrobial resistance among the bacterial isolates in 2021[J]. Chinese Journal of Infection and Chemotherapy, 2022, 22(5): 521-530.
[5] 全国细菌耐药监测网. 全国细菌耐药监测网2014 ~ 2019 年耐碳青霉烯类肺炎克雷伯菌流行病学变迁[J]. 中国感染控制杂志, 2021, 20(2): 175-179. China Antimicrobial Resistance Surveillance. Epidemiological change in carbapenem-resistant Klebsiella pneumoniae: surveillance report from China Antimicrobial Resistance Surveillance in 2014 ~ 2019[J]. Chinese Journal of Infection Control, 2021, 20(2):175-179.
[6] 郑茂, 陈宗耀, 王登朝, 等. 耐碳青霉烯类肺炎克雷伯菌感染的临床特征及耐药机制研究[J]. 现代检验医学杂志, 2022, 37(4): 143-148. ZHENG Mao, CHEN Zongyao, WANG Dengchao, et al. Study on the clinical characteristics of carbapenemresistant Klebsiella pneumoniae infection and its resistance mechanisms[J]. Journal of Modern Laboratory Medicine, 2022, 37(4): 143-148.
[7] NI Lijia, ZHANG Zhixian, SHEN Rui, et al. Disinfection strategies for carbapenem-resistant Klebsiella pneumoniae in a healthcare facility[J].Antibiotics(Basel), 2022, 11(6): 736.
[8] ARATO V, RASO M M, GASPERINI G, et al. Prophylaxis and treatment against Klebsiella pneumoniae: current insights on this emerging antimicrobial resistant global threat[J]. International Journal of Molecular Sciences, 2021, 22(8): 4042.
[9] 赵颖, 李茁, 张鹏, 等. 2014 ~ 2020 年陕西省人民医院耐碳青霉烯类肺炎克雷伯菌检出率与同期抗生素暴露及相关危险因素分析[J]. 现代检验医学杂志,2021, 36(6): 192-196. ZHAO Ying, LI Zhuo, ZHANG Peng, et al. Exploration of risk factors and the antimicrobial exposure associated with increased detection of carbapenem-resistant Klebsiella pneumoniae in Shaanxi Provincial People’s Hospital from 2014 to 2020[J]. Journal of Modern Laboratory Medicine, 2021, 36(6): 192-196.
[10] KARAISKOS I, GALANI I, PAPOUTSAKI V, et al. Carbapenemase producing Klebsiella pneumoniae:implication on future therapeutic strategies[J]. Expert Review of Anti-Infective Therapy, 2022, 20(1): 53-69.
[11] BOUZA E. The role of new carbapenem combinations in the treatment of multidrug-resistant gram-negative infections[J]. Journal of Antimicrobial Chemotherapy,2021, 76(Suppl 4): iv38-iv45.
[12] KARAKONSTANTIS S, KRITSOTAKIS E I, GIKAS A. Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems,aminoglycosides, polymyxins and tigecycline: an approach based on the mechanisms of resistance to carbapenems[J]. Infection, 2020, 48(6): 835-851.
[13] CASTANHEIRA M, DESHPANDE L M, MENDES R E, et al. Variations in the occurrence of resistance phenotypes and carbapenemase genes among Enterobacteriaceae isolates in 20 years of the SENTRY antimicrobial surveillance program[J]. Open Forum Infectious Diseases, 2019, 6(Suppl 1): S23-S33.
[14] TILAHUN M, KASSA Y, GEDEFIE A, et al. Emerging carbapenem-resistant Enterobacteriaceae infection, its epidemiology and novel treatment options: a review [J].Infection and Drug Resistance, 2021, 14: 4363-4374.
[15] PLAZAK M E, TAMMA P D, HEIL E L. The antibiotic arms race: current and emerging therapy for Klebsiella pneumoniae carbapenemase (KPC) - producing bacteria[J]. Expert Opinion on Pharmacotherapy, 2018,19(18): 2019-2031.
[16] 中国碳青霉烯耐药肠杆菌科细菌感染诊治与防控专家共识编写组, 中国医药教育协会感染疾病专业委员会, 中华医学会细菌感染与耐药防控专业委员会.中国碳青霉烯耐药肠杆菌科细菌感染诊治与防控专家共识[J]. 中华医学杂志, 2021, 101(36):2850-2860. Expert Consensus Compilation Group on Diagnosis,Treatment and Prevention of Carbapenem-Resistant Enterobacteriaceae Bacterial, Infectious Diseases Society of China, Chinese Society of Bacterial Infection and Resistance. Treatment and prevention of carbapenem-resistant Enterobacteriaceae bacterial infections [J]. National Medical Journal of China, 2021,101(36): 2850-2860.
[17] 阿力米热·艾买提, 丁丽, 伊思达, 等. 耐碳青霉烯类肺炎克雷伯菌感染治疗进展[J]. 中国感染与化疗杂志, 2022, 22(6): 779-784. ALIMIRE Ameti, DING Li, YI Sida, et al. Carbapenemresistant Klebsiella pneumoniae infections: recent treatment advances[J]. Chinese Journal of Infection and Chemotherapy, 2022, 22(6): 779-784.
[18] HOU Siyuan, WU Dan, FENG Xinghuo. Polymyxin monotherapy versus polymyxin-based combination therapy against carbapenem-resistant Klebsiella pneumoniae: A systematic review and meta-analysis [J].Journal of Global Antimicrobial Resistance, 2020, 23:197-202.
[19] EMRE S, MOROLU C, YLDRMAK T ,et al. Combination antibiotic therapy in pan-resistant Klebsiella pneumoniae infection: A report of two cases[J].Klimik Dergisi, 2018, 31(2):169-172.
[20] SINGH M, KAUR L, BAJAJ R, et al. Double carbapenem regimen used as salvage therapy to treat multidrug-resistant Klebsiella pneumoniae causing ventilator-associated pneumonia[J]. Advances in Respiratory Medicine, 2021, 89(2): 203-206.
[21] ERDEM F, ABULAILA A, AKTAS Z, et al. In vitro evaluation of double carbapenem and colistin combinations against OXA-48, NDM carbapenemaseproducing colistin-resistant Klebsiella pneumoniae strains[J]. Antimicrobial Resistance and Infection Control, 2020, 9(1): 70.
[22] ZHANEL G G, LAWRENCE C K, ADAM H, et al. Imipenem-relebactam and meropenem-vaborbactam:two novel carbapenem-β-lactamase inhibitor combinations[J]. Drugs, 2018, 78(1): 65-98.
[23] ELJAALY K, ALHARBI A, ALSHEHRI S, et al. Plazomicin: a novel aminoglycoside for the treatment of resistant gram-negative bacterial infections[J].Drugs, 2019, 79(3): 243-269.
[24] DE SOUZA C M, DA SILVA ? P, J?NIOR N G O, et al. Peptides as a therapeutic strategy against Klebsiella pneumoniae[J]. Trends in Pharmacological Sciences,2022, 43(4): 335-348.
[25] ZHANG Xiaodong, SHI Shiyi, YAO Zhuocheng,et al. Antimicrobial peptide WAM-1: a promising antibacterial and anti-inflammatory drug against carbapenem-resistant Klebsiella pneumoniae[J]. Journal of Antimicrobial Chemotherapy, 2022, 77(7): 1903-1911.
[26] VAN DER WEIDE H, VERMEULEN-DE JONGH D M C, VAN DER MEIJDEN A, et al. Antimicrobial activity of two novel antimicrobial peptides AA139 and SET-M33 against clinically and genotypically diverse Klebsiella pneumoniae isolates with differing antibiotic resistance profiles[J]. International Journal of Antimicrobial Agents, 2019, 54(2): 159-166.
[27] VAN DER WEIDE H, COSS?O U, GRACIA R, et al. Therapeutic efficacy of novel antimicrobial peptide AA139-nanomedicines in a multidrug-resistant Klebsiella pneumoniae pneumonia-septicemia model in rats[J]. Antimicrobial Agents and Chemotherapy, 2020,64(9): e00517-e00520.
[28] LYU W, MI Dehui, VINSON P N, et al. Large-scale identification of multiple classes of host defense peptide-inducing compounds for antimicrobial therapy[J]. International Journal of Molecular Sciences,2022, 23(15): 8400.
[29] WITHERELL K S, PRICE J, BANDARANAYAKE A D, et al. In vitro activity of antimicrobial peptide CDP-B11 alone and in combination with colistin against colistin-resistant and multidrug-resistant Escherichia coli[J]. Scientific Reports, 2021, 11(1):2151.
[30] WITHERELL KS, PRICE J, BANDARANAYAKE A D, et al. Circumventing colistin resistance by combining colistin and antimicrobial peptides to kill colistinresistant and multidrug-resistant gram-negative bacteria[J]. Journal of Global Antimicrobial Resistance, 2020,22: 706-712.
[31] BAKER K R, JANA B, HANSEN A M, et al. Repurposing azithromycin and rifampicin against gram-negative pathogens by combination with peptide potentiators[J]. International Journal of Antimicrobial Agents, 2019, 53(6): 868-872.
[32] AL-FARSI HM, AL-ADWANI S, AHMED S, et al. Effects of the antimicrobial peptide LL-37 and innate effector mechanisms in colistin-resistant Klebsiella pneumoniae with mgrb insertions [J]. Frontiers in Microbiology, 2019, 10: 2632.
[33] MUSILA L, TIRIA F R. A review of the innate immune evasion mechanisms and status of vaccine development of Klebsiella pneumonia[J]. Microbiology Research Journal International, 2021, 31(1): 33-47.
[34] BENGOECHEA J A, SA PESSOA J. Klebsiella pneumoniae infection biology: living to counteract host defences[J]. FEMS Microbiology Review, 2019, 43(2):123-144.
[35] CHOI M, TENNANT S M, SIMON R, et al. Progress towards the development of Klebsiella vaccines[J].Expert Review of Vaccines, 2019, 18(7): 681-691.
[36] ZHANG Baozhong, HU Danyu, DOU Ying, et al. Identification and evaluation of recombinant outer membrane proteins as vaccine candidates against Klebsiella pneumoniae [J]. Frontiers in Immunology,2021, 12: 730116.
[37] RODRIGUES M X, YANG Yongqiang, DE SOUZA MEIRA E B, et al. Development and evaluation of a new recombinant protein vaccine (YidR) against Klebsiella pneumoniae infection[J]. Vaccine, 2020,38(29): 4640-4648.
[38] DIAGO-NAVARRO E, MOTLEY M P, RUIZ-PER?Z G, et al. Novel, broadly reactive anticapsular antibodies against carbapenem-resistant Klebsiella pneumoniae protect from infection[J]. mBio, 2018, 9(2): e00091-18.
[39] BANERJEE K, MOTLEY M P, DIAGO-NAVARRO E,et al. Serum antibody responses against carbapenemresistant Klebsiella pneumoniae in infected patients[J].mSphere, 2021, 6(2): e01335-20.
[40] BRONCANO-LAVADO A, SANTAMAR?A-CORRAL G, ESTEBAN J, et al. Advances in bacteriophage therapy against relevant multi drug-resistant pathogens[J]. Antibiotics-Basel, 2021, 10(6): 672.
[41] 石鑫. 噬菌体治疗耐药肺炎克雷伯菌感染的临床应用和机制研究[D]. 上海:上海交通大学, 2019. SHI Xin. Clinical application and mechanism of phage therapy for drug-resistant Klebsiella pneumoniae infection[D]. Shanghai:Shanghai Jiaotong University,2019.
[42] CORBELLINO M, KIEFFER N, KUTATELADZE M, et al. Eradication of a multidrug-resistant,carbapenemase-producing Klebsiella pneumoniae isolate following oral and intra-rectal therapy with a custom made, lytic bacteriophage preparation[J].Clinical Infectious Diseases, 2020, 70(9): 1998-2001.
[43] CANO E J, CAFLISCH K M, BOLLYKY P L, et al. Phage therapy for limb-threatening prosthetic knee Klebsiella pneumoniae infection: case report and in vitro characterization of anti-biofilm activity[J].Clinical Infectious Diseases, 2021, 73(1): e144-e151.
[44] 高雅, 王兆飞, 严亚贤. 噬菌体治疗肺炎克雷伯菌感染的研究进展[J]. 微生物学通报, 2021, 48(9): 3271-3280. GAO Ya, WANG Zhaofei, YAN Yaxian. Advances in the treatment of Klebsiella pneumoniae infection with bacteriophage therapy[J]. Microbiology, 2021, 48(9):3271-3280.
[45] GU LIU C, GREEN S I, MIN L, et al. Phageantibiotic synergy is driven by a unique combination of antibacterial mechanism of action and stoichiometry[J].mBio, 2020, 11(4): e01462-20.
[46] VAREILLE-DELARBRE M, MIQUEL S, GARCIN S, et al. Immunomodulatory effects of lactobacillus plantarum on inflammatory response induced by Klebsiella pneumoniae[J]. Infection and immunity,2019, 87(11): e00570-19.
[47] IWANAGA N, SANDQUIST I, WANEK A, et al. Host immunology and rational immunotherapy for carbapenem-resistant Klebsiella pneumoniae infection[J]. JCI Insight, 2020, 5(8): e135591.
[48] FRAILE-?GREDA V, CA?ADAS O, WEAVER T E,et al. Synergistic action of antimicrobial lung proteins against Klebsiella pneumoniae[J]. International Journal of Molecular Sciences, 2021, 22(20): 11146.
[49] RANGASAMY T, GHIMIRE L, JIN Liliang, et al. Host defense against Klebsiella pneumoniae pneumonia is augmented by lung-derived mesenchymal stem cells[J].Journal of Immunology, 2021, 207(4): 1112-1127.
[50] REKHA R S, KARADOTTIR H, AHMED S, et al. Innate effector systems in primary human macrophages sensitize multidrug-resistant Klebsiella pneumoniae to antibiotics[J]. Infection and Immunity, 2020, 88(8):e00186-20.
[51] LIU Dong, CHEN Zhifu, YUAN Yue, et al. Innate immune effectors play essential roles in acute respiratory infection caused by Klebsiella pneumoniae[J]. J Immunol Res, 2020, 2020: 5291714.

相似文献/References:

[1]徐小红,巫之韵,蔡美莉,等.产酸克雷伯菌耐碳青霉烯类抗生素耐药机制的研究[J].现代检验医学杂志,2017,32(01):19.[doi:10.3969/j.issn.1671-7414.2017.01.006]
 XU Xiao-hong,WU Zhi-yun,CAI Mei-li,et al.Study on the Resistance Mechanisms of Carbapenem-Resistant Klebsiella Oxytoca[J].Journal of Modern Laboratory Medicine,2017,32(06):19.[doi:10.3969/j.issn.1671-7414.2017.01.006]
[2]程 莉,谭婷婷,魏红霞,等.临床分离的耐碳青霉烯肺炎克雷伯菌的耐药机制研究[J].现代检验医学杂志,2017,32(03):112.[doi:10.3969/j.issn.1671-7414.2017.03.030]
 CHENG Li,TAN Ting-ting,WEI Hong-xia,et al.Resistance Mechanisms of Clinical Isolated Carbapenem-Resistant Klebsiella Pneumoniae[J].Journal of Modern Laboratory Medicine,2017,32(06):112.[doi:10.3969/j.issn.1671-7414.2017.03.030]
[3]张 丽,齐 军,吴宗勇,等.耐碳青霉烯类肺炎克雷伯菌临床分离株中喹诺酮类及16SrRNA甲基化酶基因的检测[J].现代检验医学杂志,2018,33(05):27.[doi:10.3969/j.issn.1671-7414.2018.05.008]
 ZHANG Li,QI Jun,WU Zong-yong,et al.Detection of Quinolone and 16SrRNA Methyltransferasegene of Clinical Isolated Carbapenem-Resistant Klebsiella Pneumoniae[J].Journal of Modern Laboratory Medicine,2018,33(06):27.[doi:10.3969/j.issn.1671-7414.2018.05.008]
[4]刘登科,牛虹博,葛正茂,等.曲霉菌对唑类药物的耐药机制最新研究进展[J].现代检验医学杂志,2020,35(02):161.[doi:10.3969 / j.issn.1671-7414.2020.02.044]
 LIU Deng-ke,NIU Hong-bo,GE Zheng-mao,et al.Recent Advances in the Mechanism of Aspergillus Resistance to Azole Drugs[J].Journal of Modern Laboratory Medicine,2020,35(06):161.[doi:10.3969 / j.issn.1671-7414.2020.02.044]
[5]赵 颖,李 茁,张 鹏,等.2014~2020年陕西省人民医院耐碳青霉烯类肺炎克雷伯菌检出率与同期抗生素暴露及相关危险因素分析[J].现代检验医学杂志,2021,36(06):192.[doi:10.3969/j.issn.1671-7414.2021.06.042]
 ZHAO Ying,LI Zhuo,ZHANG Peng,et al.Exploration of Risk Factors and the Antimicrobial Exposure Associated with Increased Detection of Carbapenem-resistant Klebsiella Pneumoniae in Shaanxi Provincial People’s Hospital from 2014 to 2020[J].Journal of Modern Laboratory Medicine,2021,36(06):192.[doi:10.3969/j.issn.1671-7414.2021.06.042]
[6]郑 茂a,陈宗耀a,王登朝a,等.耐碳青霉烯类肺炎克雷伯菌感染的临床特征及耐药机制研究[J].现代检验医学杂志,2022,37(04):143.[doi:10.3969/j.issn.1671-7414.2022.04.028]
 ZHENG Maoa,CHEN Zong-yaoa,WANG Deng-chaoa,et al.Study on the Clinical Characteristics of Carbapenem-Resistant Klebsiella Pneumoniae Infection and Its Resistance Mechanisms[J].Journal of Modern Laboratory Medicine,2022,37(06):143.[doi:10.3969/j.issn.1671-7414.2022.04.028]
[7]雷 昕,李志兰,卢凌鹏,等.非编码RNA 在肝癌化疗耐药中的作用机制最新研究进展[J].现代检验医学杂志,2024,39(02):198.[doi:10.3969/j.issn.1671-7414.2024.02.036]
 LEI Xin,LI Zhilan,LU Lingpeng,et al.Latest Research Progress of the Mechanism of Non-coding RNA in Chemoresistance of Hepatocellular Carcinoma[J].Journal of Modern Laboratory Medicine,2024,39(06):198.[doi:10.3969/j.issn.1671-7414.2024.02.036]

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金(82060669):绿原酸激活细胞自噬抵抗肺炎克雷伯菌感染的分子机制研究;云南省科技厅-基础研究专项-面上项目(202101AT070256):绿原酸通过PI3K/Akt-mTOR 调控肺组织天然免疫应答抵御肺炎克雷伯菌侵染的分子机制;云南省教育厅科学研究基金项目(2023Y0641):新型噁唑烷酮类耐药基因optrA 在粪肠球菌中的水平传播机制;昆明医科大学第二附属医院院内科技计划资助项目(2021yk002):应用MALDI-TOF MS 建立一种快速药敏试验测定MIC:基于LREfs耐药性检测;昆明医科大学2023 年研究生创新基金项目(2023S315):利奈唑胺耐药基因optrA 在临床来源的粪肠球菌间的传播机制研究。
作者简介:李阳昱(1997-),女,硕士,在读研究生,研究方向:临床检验诊断微生物学,E-mail:liyangyu2021@126.com。
通讯作者:李庆蓉(1986-),女,博士,副主任技师,主要从事临床检验诊断微生物学研究,E-mail:liqrmed@163.com。
更新日期/Last Update: 2023-11-15