参考文献/References:
[1] ZHAO Huayan, LI Shenglei, WANG Guannan, et al. Study of the mechanism by which dinaciclib induces apoptosis and cell cycle arrest of lymphoma Raji cells through a CDK1-involved pathway[J]. Cancer Medicine, 2019, 8(9): 4348-4358.
[2] MOLETI M L, TESTI A M, FO? R. Treatment of relapsed/refractory paediatric aggressive B-cell non-Hodgkin lymphoma[J]. British Journal of Haematology, 2020, 189(5): 826-843.
[3] LIU Yingyue, ZHOU Xiangxiang, WANG Xin. Targeting the tumor microenvironment in B-cell lymphoma:challenges and opportunities[J]. Journal of Hematology & Oncology, 2021, 14(1): 125.
[4] SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023[J]. CA-A Cancer Journal for Clinicians, 2023, 73(1): 17-48.
[5] XIA Changfa, DONG Xuesi, LI He, et al. Cancer statistics in china and united states, 2022:profiles, trends, and determinants[J]. Chinese Medical Journal(Engl), 2022, 135(5): 584-590.
[6] ZINZANI P L, MINOTTI G. Anti-CD19 monoclonal antibodies for the treatment of relapsed or refractory B-cell malignancies:a narrative review with focus on diffuse large B-cell lymphoma[J]. Journal of Cancer Research and Clinical Oncology, 2022, 148(1): 177-190.
[7] KANG C H, KIM Y, LEE H K, et al. Identification of potent CD19 scFv for CAR T cells through scFv screening with NK/T-Cell line[J]. International Journal of Molecular Sciences, 2020, 21(23):9163.
[8] SPIEGEL J Y, PATEL S, MUFFLY L, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies:a phase 1 trial [J]. Nature Medicine, 2021, 27(8): 1419-1431.
[9] ZHANG Xiaomin, ZHU Lingling, ZHANG Hui, et al. CAR-T cell therapy in hematological malignancies:current opportunities and challenges[J]. Frontiers in Immunology, 2022, 13: 927153.
[10] MAJZNER R G, MACKALL C L. Tumor antigen escape from CAR T-cell therapy[J]. Cancer Discovery, 2018, 8(10): 1219-1226.
[11] ZHENG Chanli, XIAO Yu, LI Yangqiu, et al. Knockdown of long non-coding RNA PVT1 inhibits the proliferation of Raji cells through cell cycle regulation[J]. Oncology Letters, 2019, 18(2): 1225-1234.
[12] 朱晶晶, 张静, 王萍, 等. 血必净注射液增强抗CD19 CAR-T 细胞肿瘤杀伤活性的研究[J]. 中国中西医结合急救杂志, 2021, 28(2): 209-213. ZHU Jingjing, ZHANG Jing, WANG Ping, et al. Xuebijing injection enhancing CD19 CAR-T cell anti tumor killing activity[J]. Chinese Journal of Integrated Traditional and Western Medicine in Intensive and Critical Care, 2021, 28(2):209-213.
[13] LI Xiaorui, FENG Yaru, SHANG Fengqin, et al. Characterization of the therapeutic effects of novel chimeric antigen receptor T cells targeting CD38 on multiple myeloma[J]. Frontiers in Oncology, 2021, 11: 703087.
[14] ENGEL P, ZHOU L J, ORD D C, et al. Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule[J]. Immunity, 1995, 3(1):39-50.
[15] GLOBERSON LEVIN A, RIVI?RE I, ESHHAR Z, et al. CAR T cells:Building on the CD19 paradigm[J]. European Journal of Immunology, 2021, 51(9):2151-2163.
[16] LI Xinchen, DING Ying, ZI Mengting, et al. CD19, from bench to bedside[J]. Immunology Letters, 2017, 183: 86-95.
[17] PAN J, YANG J F, DENG B P, et al. High efficacy and safety of low-dose CD19-directed CAR-T cell therapy in 51 refractory or relapsed B acute lymphoblastic leukemia patients[J]. Leukemia, 2017, 31(12): 2587-2593.
[18] LU Junru, JIANG Guan. The journey of CAR-T therapy in hematological malignancies[J]. Molecular Cancer, 2022, 21(1): 194.
[19] RUELLA M, XU Jun, BARRETT D M, et al. Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell[J]. Nature Medicine, 2018, 24(10): 1499-1503.
[20] STERNER R C, STERNER R M. CAR-T cell therapy:current limitations and potential strategies[J].Blood cancer J, 2021, 11(4):69.
[21] ZHAO Lijun, LI Shuhong, WEI Xiaoyi, et al. A novel CD19/CD22/CD3 trispecific antibody enhances therapeutic efficacy and overcomes immune escape against B-ALL[J]. Blood, 2022, 140(16):1790-1802.
[22] DAI Hanren, WU Zhiqiang, JIA Hejin, et al. Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia[J]. Journal of Hematology & Oncology, 2020, 13(1):30.
[23] 吴永彬, 李凌. CRISPR/Cas 系统在新型冠状病毒肺炎快速诊断中的应用[J]. 现代检验医学杂志, 2022, 37(3): 1-5. WU Yongbin, LI Ling. Application of CRISPR/Cas systems in the rapid diagnosis of coronavirus disease 2019[J]. Journal of Modern Laboratory Medicine, 2022, 37(3):1-5.
[24] 黄小琴, 涂名进, 余华军, 等. 应用CRISPR/Cas9 系统构建肺癌细胞系获得AMPKα1 基因敲除的稳定细胞株[J]. 现代检验医学杂志, 2023, 38(1): 107-111. HUANG Xiaoqin, TU Mingjin, YU Huajun, et al. Application of CRISPR/Cas 9 system to construct lung cancer cell lines to obtain stable cell lines with AMPK α1 knockdown[J]. Journal of Modern Laboratory Medicine, 2023, 38(1):107-111.
[25] CHENG Hao, ZHANG Feng, DING Yang. CRISPR/Cas9 delivery system engineering for genome editing in therapeutic applications[J]. Pharmaceutics, 2021, 13(10): 1649.