参考文献/References:
[1] 陶红莉, 鲁晓波, 吴怡, 等. 急性脑损伤患者血清Tau,HMGB1 水平检测在判断并发认知功能障碍风险的应用价值[J]. 现代检验医学杂志, 2021, 36(5):159-163. TAO Hongli, LU Xiaobo, WU Yi, et al. Application value of serum tau and HMGB1 levels in patients with acute brain injury in judging the risk of cognitive impairment[J]. Journal of Modern Laboratory Medicine, 2021, 36(5): 159-163.
[2] 白文娟, 方秀英, 石权, 等. 新生儿缺氧缺血性脑病脑电背景演变与脑损伤程度的相关性研究[J]. 中国当代儿科杂志, 2021, 23(9):909-915. BAI Wenjuan, FANG Xiuying, SHI Quan, et al. Correlation of electroencephalogram background evolution with the degree of brain injury in neonates with hypoxic-ischemic encephalopathy[J]. Chinese Journal of Contemporary Pediatrics, 2021, 23(9): 909-915.
[3] 庄静, 陈全景. 新生儿缺氧缺血性脑损伤中微小RNA 的研究进展[J]. 儿科药学杂志, 2021, 27(12):53-57. ZHUANG Jing, CHEN Quanjing. Progress of microRNA in neonatal hypoxic-ischemic brain damage[J]. Journal of Pediatric pharmacy, 2021, 27(12): 53-57.
[4] DEVOTO C, LAI Chen, QU Baoxi, et al. Exosomal microRNAs in military personnel with mild traumatic brain injury: preliminary results from the chronic effects of neurotrauma consortium biomarker discovery project[J]. Journal of Neurotrauma, 2020, 37(23): 2482-2492.
[5] WANG Li, SONG Lifang, CHEN Xiaoyi, et al. MicroRNA-139-5p confers sensitivity to antiepileptic drugs in refractory epilepsy by inhibition of MRP1[J].CNS Neuroscience & Therapeutics, 2020, 26(4): 465-474.
[6] YAO Yiqin, HU Sheng, ZHANG Chunxue, et al. Ginsenoside Rd attenuates cerebral ischemia/reperfusion injury by exerting an anti-pyroptotic effect via the miR-13p-5p/FoxO1/Keap1/Nrf2 axis[J]. International Immunopharmacology, 2022, 105:108582.
[7] SAHA P, GUPTA R, SEN T, et al. Histone deacetylase 4 downregulation Elicits post-traumatic psychiatric disorders through impairment of neurogenesis[J].Journal of Neurotrauma, 2019, 36(23): 3284-3296.
[8] 张军建, 张矿召, 武振江. 血清MBP, GFAP 水平与新生儿缺氧缺血性脑病脑损伤程度的关系研究[J].中国实用神经疾病杂志, 2020, 23(22):1986-1991. ZHANG Junjian, ZHANG Kuangzhao, WU Zhenjiang. Study on the relationship between serum MBP and GFAP levels and the severity of brain damage in neonates with hypoxic ischemic encephalopathy [J].Chinese Journal of Practical Nervous Diseases, 2020, 23(22): 1986-1991.
[9] 中华医学会儿科学分会新生儿学组. 新生儿缺氧缺血性脑病诊断标准[J]. 中国当代儿科杂志, 2005, 7(2):97-98. The Group of Neonatology, Pediatric Society, Chinese Medical Association. Diagnostic criteria for neonatal hypoxic-ischermic encephalopathy[J]. The Chinese Journal of Contemporary Pediatrics, 2005, 7(2): 97-98.
[10] CHALAK L F, ADAMS-HUET B, SANT'ANNA G. A total sarnat score in mild hypoxic-ischemic encephalopathy can detect infants at higher risk of disability [J]. Journal Pediatrics, 2019, 214: 217-221. e1.
[11] 邢珊, 刘俐, 李改莲, 等. NBNA 评分在评价早产儿脑发育、脑损伤及预后中的应用[J]. 中国儿童保健杂志, 2016, 24(2):191-194. XING Shan, LIU Li, LI Gailian, et al. Evaluation of brain development and injury in preterm infants by neonatal behavioral neurological assessment[J].Chinese Journal of Child Health Care, 2016, 24(2): 191-194.
[12] 赵佳宝, 霍亚玲, 刘杨. 新生儿缺氧缺血性脑病豆纹动脉血流变化与脑损伤程度的关系[J]. 中国中西医结合儿科学, 2021, 13(3):228-231. ZHAO Jiabao, HUO Yaling, LIU Yang. Relationship between the changes in blood flow of lenticulostriate artery and the degree of brain injury in neonatal hypoxic-ischemic encephalopathy[J]. Chinese Pediatrics of Integrated Traditional and Western Medicine, 2021, 13(3): 228-231.
[13] 孙祎璠, 蔡成. 新生儿缺氧缺血性脑病治疗研究进展[J]. 中华实用儿科临床杂志, 2021, 36(8):631-634. SUN Yifan, CAI Cheng. Research progress of treatment for neonatal hypoxic ischemic encephalopathy[J].Chinese Journal of Applied Clinical Pediatrics, 2021, 36(8): 631-634.
[14] 张玉娇, 周杏. 血清电解质、CKBB 及血乳酸水平与新生儿缺氧缺血性脑病严重程度的相关性分析[J]. 中南医学科学杂志, 2020, 48(2):179-182. ZHANG Yujiao, ZHOU Xing. The correlation between serum electrolyte, CKBB and lactic acid levels and the severity of neonatal hypoxic-ischemic encephalopathy[J]. Medical Science Journal of Central South China, 2020, 48(2): 179-182.
[15] DESTEFANIS E, AV?AR G, GROZA P, et al. A mark of disease: how mRNA modifications shape genetic and acquired pathologies[J]. RNA, 2021, 27(4): 367-389.
[16] ZHANG Ziying, SHEN Lifang, YAN Yingying. MiR-139-5p alleviates neural cell apoptosis induced by spinal cord injury through targeting TRAF3[J]. Acta Biochimica Polonica, 2020, 67(3): 359-365.
[17] MAIN P, TAN Weijun, WHEELER D. et al. Increased abundance of nuclear HDAC4 impairs neuronal development and long-term memory [J]. Frontiers in Molecular Neuroscience, 2021, 14: 616642.
[18] 李建国, 陈静, 孟金凤, 等. 缺血再灌注对大鼠海马组蛋白脱乙酰酶磷酸化水平的影响[J]. 神经解剖学杂志, 2022, 38(2):135-141. LI Jianguo, CHEN Jing, MENG Jinfeng, et al. Effects of ischemia-reperfusion on the phosphorylation level of histone deacetylase in the hippocampus of rats[J].Chinese Journal of Neuroanatomy, 2022, 38(2): 135-141.
[19] LUO Pan, FU Xiaopei, CHANG Mujun, et al. Cerebral ischemia-reperfusion causes a down regulation of HCN1 expression via enhancing the nuclear NRSFHDAC4 gathering that contributes to neuron damage[J]. Brain Research Bulletin, 2020, 156: 50-57.
[20] MA Wenjing, CAI Yong, SHEN Yuntian, et al. HDAC4 knockdown alleviates denervation-induced muscle atrophy by inhibiting myogenin-dependent atrogene activation [J]. Frontiers in Cellular Neuroscience, 2021, 15: 663384.
[21] 史学凯, 黄锦雄, 蓝国锋, 等. 振幅整合脑电图联合新生儿行为神经测定评估新生儿脑功能损伤的回顾性研究[J]. 新疆医学, 2022, 53(6):678-681, 685. SHI Xuekai, HUANG Jinxiong, LAN Guofeng, et al. A retrospective study of amplitude integrated electroencephalography with neonatal behavioral neurological assessment for the evaluation of neonatal brain functional injury[J]. Xinjiang Medical Journal, 2022, 53(6): 678-681, 685.
[22] ZHAO Chensheng, YANG Fan, WEI Xiaona, et al. MiR-139-5p upregulation alleviated spontaneous recurrent epileptiform discharge-induced oxidative stress and apoptosis in rat hippocampal neurons via regulating the notch pathway[J]. Cell Biology International, 2021, 45(2): 463-476.
[23] DUAN Wenbiao, CHEN Xue. Jatrorrhizine can improve nerve cell injury induced by AB25-35, acting through miR-223-3p/HDAC4 axis[J]. American Journal of Translational Research, 2021, 13(5): 4644-4655.