[1]杨佩霓,李庆蓉,李 江,等.噬菌体抗细菌生物膜机制及应用策略的研究进展[J].现代检验医学杂志,2024,39(01):199-204.[doi:10.3969/j.issn.1671-7414.2024.01.037]
 YANG Peini,LI Qingrong,LI Jiang,et al.Advances in the Mechanism of Phage Resistance to Bacterial Biofilms and Strategies for Its Application[J].Journal of Modern Laboratory Medicine,2024,39(01):199-204.[doi:10.3969/j.issn.1671-7414.2024.01.037]
点击复制

噬菌体抗细菌生物膜机制及应用策略的研究进展()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第39卷
期数:
2024年01期
页码:
199-204
栏目:
综述
出版日期:
2024-01-15

文章信息/Info

Title:
Advances in the Mechanism of Phage Resistance to Bacterial Biofilms and Strategies for Its Application
文章编号:
1671-7414(2024)01-199-06
作者:
杨佩霓李庆蓉李 江何 薇和平安吕 梅杨 旭
(昆明医科大学第二附属医院检验科,昆明650032)
Author(s):
YANG Peini LI Qingrong LI Jiang HE Wei HE Ping’an L? Mei YANG Xu
(Department of Clinical Laboratory, the Second Affiliated Hospital of Kunming Medical University, Kunming 650032,China)
关键词:
噬菌体细菌生物膜噬菌体抗细菌生物膜机制噬菌体应用
分类号:
R446.5
DOI:
10.3969/j.issn.1671-7414.2024.01.037
文献标志码:
A
摘要:
细菌生物膜(bacterial biofilms,BF)是细菌在生物或非生物表面所形成的复杂微生物群落,其形成显著增强了细菌毒力和耐药性,与高比例的慢性细菌感染相关,对人类健康造成严重威胁。传统抗生素和常用消毒剂在清除生物膜方面的能力有限,迫切需要一种有效的新策略治疗细菌生物膜。噬菌体(bacteriophage,phage)作为一类能感染并裂解细菌的病毒,具有较高的安全性和特异度,被认为是治疗细菌生物膜有前景的替代方法。该文综述了噬菌体抗细菌生物膜的作用机制、基于噬菌体及其衍生物在防控细菌生物膜形成的应用策略,为开发高效的噬菌体抗细菌生物膜方法提供新思路。
Abstract:
Bacterial biofilms(BF) are complex microbial communities formed by bacteria on living or abiotic surfaces. Their formation significantly enhances bacterial virulence and drug resistance and is associated with a high proportion of chronic bacterial infections, posing a serious threat to human health. The ability of traditional antibiotics and commonly used disinfectants to clear biofilms is limited, and an effective new strategy to treat BF is urgently needed. Bacteriophage, as a kind of virus that can infect and lyse bacteria, has high safety and specificity, and is considered as a promising alternative method for the treatment of BF. In this paper, the mechanism of bacteriophage anti-bacterial biofilm and the application strategies based on bacteriophage and its derivatives in the prevention and control of bacteriophage biofilm formation were reviewed, which provided new ideas for the development of efficient bacteriophage anti-bacterial biofilm methods.

参考文献/References:

[1] Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis [J]. Lancet, 2022, 399(10325): 629-655.
[2] UDAONDO Z, MATILLA M A. Mining for novel antibiotics in the age of antimicrobial resistance[J].Microbial Biotechnology, 2020, 13(6): 1702-1704.
[3] PIRES D P, MELO L D R, AZEREDO J. Understanding the complex Phage-host interactions in biofilm communities[J]. Annu Rev Virol, 2021, 8(1): 73-94.
[4] VISHWAKARMA A, DANG F, FERRELL A, et al. Peptidomimetic polyurethanes inhibit bacterial biofilm formation and disrupt surface established biofilms[J]. Journal of the American Chemical Society, 2021, 143(25): 9440-9449.
[5] TIAN Fengjuan, LI J ing, NAZIR A, e t a l . Bacteriophage - A promising alternative measure for bacterial biofilm control [J]. Infect Drug Resist, 2021, 14: 205-217.
[6] LIU Siyu, LU Hongyun, ZHANG Shengliang, et al. Phages against pathogenic bacterial biofilms and biofilm-based infections: a review[J]. Pharmaceutics,2022, 14(2): 427.
[7] MUHAMMAD M H, IDRIS A L, FAN Xiao, et al. Beyond risk: bacterial biofilms and their regulating approaches [J]. Frontiers in Microbiology, 2020, 11: 928.
[8] URU?N C, CHOPO-ESCUIN G, TOMMASSEN J, et al. Biofilms as promoters of bacterial antibiotic resistance and tolerance[J]. Antibiotics(Basel), 2020, 10(1): 3.
[9] MOHAMAD F, ALZAHRANI R R, ALSAADI A, et al. An explorative review on advanced approaches to overcome bacterial resistance by curbing bacterial biofilm formation [J]. Infection and Drug Resistance , 2023, 16: 19-49.
[10] SINGH A, AMOD A, PANDEY P, et al. Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies [J]. Biomedical Materials, 2022, 17(2).doi: 10.1088/1748-605X/ac50f6..
[11] SUH G A, PATEL R. Clinical phage microbiology: a narrative summary [J]. Clin Microbiol Infect,2023,29(6):710-713..
[12] BATINOVIC S, WASSEF F, KNOWLER S A, et al. Bacteriophages in natural and artificial environments[J].Pathogens, 2019, 8(3): 100.
[13] DION M B, OECHSLIN F, MOINEAU S. Phage diversity, genomics and phylogeny[J]. Nature Reviews Microbiology, 2020, 18(3): 125-138.
[14] ?LIWKA P, OCHOCKA M, SKARADZI?SKA A. Applications of bacteriophages against intracellular bacteria[J]. Critical Reviews in Microbiology, 2022, 48(2): 222-239.
[15] FIGUEIREDO C M, MALVEZZI KARWOWSKI M S, DA SILVA RAMOS R C P, et al. Bacteriophages as tools for biofilm biocontrol in different fields[J].Biofouling, 2021, 37(6): 689-709.
[16] 万启旸, 包红朵, 张辉, 等. 噬菌体与细菌生物膜相互作用的研究进展[J/OL]. 中国动物传染病学报, 2022: 1-13. https: //doi.org/10.19958/j.cnki.cn31-2031/s.20221206.001. WAN Qiyang, BAO Hongduo, ZHANG Hui, et al. Research progress in the interactions between bacteriophages and bacterial biofilms [J/OL]. Chinese Journal of Animal Infectious Diseases, 2022: 1-13. https://doi.org/10.19958/j.cnki.cn31-2031/s. 20221206. 001.
[17] CHANG Cheng, YU Xinbo, GUO Wennan, et al. Bacteriophage-mediated control of biofilm: a promising new dawn for the future [J]. Front Microbiol, 2022, 13: 825828.
[18] TOPKA-BIELECKA G, DYDECKA A, NECEL A, et al. Bacteriophage-derived depolymerases against bacterial biofilm[J]. Antibiotics(Basel), 2021, 10(2): 175.
[19] ARCIOLA C R, CAMPOCCIA D, MONTANARO L. Implant infections: adhesion, biofilm formation and immune evasion[J]. Nature Reviews Microbiology, 2018, 16(7): 397-409.
[20] YU Zhuodong, SCHWARZ C, ZHU Liang, et al. Hitchhiking behavior in bacteriophages facilitates phage infection and enhances carrier bacteria colonization[J].Environmental Science & Technology, 2021, 55(4): 2462-2472.
[21] ZHANG Bo, YU Pingfeng, WANG Zijian, et al. Hormetic promotion of biofilm growth by polyvalent bacteriophages at low concentrations[J]. Environmental Science & Technology, 2020, 54(19): 12358-12365.
[22] SECOR PR, BURGENER E B, KINNERSLEY M, et al. Pf bacteriophage and their impact on pseudomonas virulence, mammalian immunity, and chronic infections[J]. Frontiers in Immunology, 2020, 11: 244.
[23] SINGH A, PADMESH S, DWIVEDI M, et al. How good are bacteriophages as an alternative therapy to mitigate biofilms of nosocomial infections [J]. Infection and Drug Resistance, 2022, 15: 503-532.
[24] MASZEWSKA A, ZYGMUNT M, GRZEJDZIAK I, et al. Use of polyvalent bacteriophages to combat biofilm of Proteus mirabilis causing catheter-associated urinary tract infections[J]. Journal of Applied Microbiology, 2018, 125(5): 1253-1265.
[25] FORTI F, ROACH D R, CAFORA M, et al. Design of a broad-range bacteriophage cocktail that reduces pseudomonas aeruginosa biofilms and treats acute infections in two animal models[J]. Antimicrobial Agents and Chemotherapy, 2018, 62(6): e02573-17.
[26] MORRIS J, KELLY N, ELLIOTT L, et al. Evaluation of bacteriophage anti-biofilm activity for potential control of orthopedic implant-related infections caused by staphylococcus aureus[J]. Surgical Infections, 2019, 20(1): 16-24.
[27] LIANG Shuang, QI Yanling, YU Huabo, et al. Bacteriophage therapy as an application for bacterial infection in China[J]. Antibiotics(Basel), 2023, 12(2): 417.
[28] FERRIOL-GONZ?LEZ C, DOMINGO-CALAP P. Phages for biofilm removal[J]. Antibiotics(Basel), 2020, 9(5): 268.
[29] TAGLIAFERRI T L, JANSEN M, HORZ H P. Fighting pathogenic bacteria on two fronts: phages and antibiotics as combined strategy [J]. Front Cell Infect Microbiol, 2019, 9: 22.
[30] FURSOV M V, ABDRAKHMANOVA R O, ANTONOVA N P, et al. Antibiofilm activity of a Broadrange recombinant endolysin LysECD7: in vitro and in vivo study[J]. Viruses, 2020, 12(5): 545.
[31] ?USIAK-SZELACHOWSKA M, WEBERD?BROWSKA B, ?ACZEK M, et al. Anti-biofilm activity of bacteriophages and lysins in chronic rhinosinusitis[J]. Acta Virologica, 2021, 65(2): 127-140.
[32] MURRAY E, DRAPER L A, ROSS R P, et al. The advantages and challenges of using endolysins in a clinical setting[J]. Viruses, 2021, 13(4): 680.
[33] PARK D W, PARK J H. Characterization of a novel phage depolymerase specific to Escherichia coli O157:H7 and biofilm control on abiotic surfaces[J].Journal of Microbiology, 2021, 59(11): 1002-1009.
[34] HUSSAIN W, YANG Xiaohan, ULLAH M, et al. Genetic engineering of bacteriophages: Key concepts, strategies, and applications[J]. Biotechnology Advances, 2023, 64: 108116.
[35] LEMON D J, KAY M K, TITUS J K, et al. Construction of a genetically modified T7Select phage system to express the antimicrobial peptide 1018[J].Journal of Microbiology, 2019, 57(6): 532-538.
[36] LANDLINGER C, TISAKOVA L, OBERBAUER V, et al. Engineered phage endolysin eliminates gardnerella biofilm without damaging beneficial bacteria in bacterial vaginosis Ex vivo[J]. Pathogens, 2021, 10(1): 54.
[37] STACHLER E, KULL A, JULIAN T R. Bacteriophage treatment before chemical disinfection can enhance removal of plastic-surface-associated Pseudomonas aeruginosa[J]. Applied and Environment Microbiology, 2021, 87(20): e0098021.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金(82060669):绿原酸激活细胞自噬抵抗肺炎克雷伯菌感染的分子机制研究;云南省科技厅- 基础研究专项- 面上项目(202101AT070256):绿原酸通过PI3K/Akt-mTOR 调控肺组织天然免疫应答抵御肺炎克雷伯菌侵染的分子机制;云南省教育厅科学研究基金项目(2023Y0641):新型恶唑烷酮类耐药基因optrA 在粪肠球菌中的水平传播机制;昆明医科大学第二附属医院内科技计划资助项目(2021yk002) :应用MALDI-TOF MS 建立一种快速药敏试验测定MIC:基于LREfs 耐药性检测 ;昆明医科大学2023 研究生创新基金(2023S315):利奈唑胺耐药基因optrA 在临床来源的粪肠球菌间的传播机制研究。
作者简介:杨佩霓(1999-),女,硕士,在读研究生,研究方向:临床检验诊断学研究,E-mail:1665498041@qq.com。
通讯作者:杨旭(1972-),女,主任技师,硕士生导师,主要从事细菌耐药机制研究,E-mail: yx8250696@163.com。
更新日期/Last Update: 2024-01-15