参考文献/References:
[1] Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis [J]. Lancet, 2022, 399(10325): 629-655.
[2] UDAONDO Z, MATILLA M A. Mining for novel antibiotics in the age of antimicrobial resistance[J].Microbial Biotechnology, 2020, 13(6): 1702-1704.
[3] PIRES D P, MELO L D R, AZEREDO J. Understanding the complex Phage-host interactions in biofilm communities[J]. Annu Rev Virol, 2021, 8(1): 73-94.
[4] VISHWAKARMA A, DANG F, FERRELL A, et al. Peptidomimetic polyurethanes inhibit bacterial biofilm formation and disrupt surface established biofilms[J]. Journal of the American Chemical Society, 2021, 143(25): 9440-9449.
[5] TIAN Fengjuan, LI J ing, NAZIR A, e t a l . Bacteriophage - A promising alternative measure for bacterial biofilm control [J]. Infect Drug Resist, 2021, 14: 205-217.
[6] LIU Siyu, LU Hongyun, ZHANG Shengliang, et al. Phages against pathogenic bacterial biofilms and biofilm-based infections: a review[J]. Pharmaceutics,2022, 14(2): 427.
[7] MUHAMMAD M H, IDRIS A L, FAN Xiao, et al. Beyond risk: bacterial biofilms and their regulating approaches [J]. Frontiers in Microbiology, 2020, 11: 928.
[8] URU?N C, CHOPO-ESCUIN G, TOMMASSEN J, et al. Biofilms as promoters of bacterial antibiotic resistance and tolerance[J]. Antibiotics(Basel), 2020, 10(1): 3.
[9] MOHAMAD F, ALZAHRANI R R, ALSAADI A, et al. An explorative review on advanced approaches to overcome bacterial resistance by curbing bacterial biofilm formation [J]. Infection and Drug Resistance , 2023, 16: 19-49.
[10] SINGH A, AMOD A, PANDEY P, et al. Bacterial biofilm infections, their resistance to antibiotics therapy and current treatment strategies [J]. Biomedical Materials, 2022, 17(2).doi: 10.1088/1748-605X/ac50f6..
[11] SUH G A, PATEL R. Clinical phage microbiology: a narrative summary [J]. Clin Microbiol Infect,2023,29(6):710-713..
[12] BATINOVIC S, WASSEF F, KNOWLER S A, et al. Bacteriophages in natural and artificial environments[J].Pathogens, 2019, 8(3): 100.
[13] DION M B, OECHSLIN F, MOINEAU S. Phage diversity, genomics and phylogeny[J]. Nature Reviews Microbiology, 2020, 18(3): 125-138.
[14] ?LIWKA P, OCHOCKA M, SKARADZI?SKA A. Applications of bacteriophages against intracellular bacteria[J]. Critical Reviews in Microbiology, 2022, 48(2): 222-239.
[15] FIGUEIREDO C M, MALVEZZI KARWOWSKI M S, DA SILVA RAMOS R C P, et al. Bacteriophages as tools for biofilm biocontrol in different fields[J].Biofouling, 2021, 37(6): 689-709.
[16] 万启旸, 包红朵, 张辉, 等. 噬菌体与细菌生物膜相互作用的研究进展[J/OL]. 中国动物传染病学报, 2022: 1-13. https: //doi.org/10.19958/j.cnki.cn31-2031/s.20221206.001. WAN Qiyang, BAO Hongduo, ZHANG Hui, et al. Research progress in the interactions between bacteriophages and bacterial biofilms [J/OL]. Chinese Journal of Animal Infectious Diseases, 2022: 1-13. https://doi.org/10.19958/j.cnki.cn31-2031/s. 20221206. 001.
[17] CHANG Cheng, YU Xinbo, GUO Wennan, et al. Bacteriophage-mediated control of biofilm: a promising new dawn for the future [J]. Front Microbiol, 2022, 13: 825828.
[18] TOPKA-BIELECKA G, DYDECKA A, NECEL A, et al. Bacteriophage-derived depolymerases against bacterial biofilm[J]. Antibiotics(Basel), 2021, 10(2): 175.
[19] ARCIOLA C R, CAMPOCCIA D, MONTANARO L. Implant infections: adhesion, biofilm formation and immune evasion[J]. Nature Reviews Microbiology, 2018, 16(7): 397-409.
[20] YU Zhuodong, SCHWARZ C, ZHU Liang, et al. Hitchhiking behavior in bacteriophages facilitates phage infection and enhances carrier bacteria colonization[J].Environmental Science & Technology, 2021, 55(4): 2462-2472.
[21] ZHANG Bo, YU Pingfeng, WANG Zijian, et al. Hormetic promotion of biofilm growth by polyvalent bacteriophages at low concentrations[J]. Environmental Science & Technology, 2020, 54(19): 12358-12365.
[22] SECOR PR, BURGENER E B, KINNERSLEY M, et al. Pf bacteriophage and their impact on pseudomonas virulence, mammalian immunity, and chronic infections[J]. Frontiers in Immunology, 2020, 11: 244.
[23] SINGH A, PADMESH S, DWIVEDI M, et al. How good are bacteriophages as an alternative therapy to mitigate biofilms of nosocomial infections [J]. Infection and Drug Resistance, 2022, 15: 503-532.
[24] MASZEWSKA A, ZYGMUNT M, GRZEJDZIAK I, et al. Use of polyvalent bacteriophages to combat biofilm of Proteus mirabilis causing catheter-associated urinary tract infections[J]. Journal of Applied Microbiology, 2018, 125(5): 1253-1265.
[25] FORTI F, ROACH D R, CAFORA M, et al. Design of a broad-range bacteriophage cocktail that reduces pseudomonas aeruginosa biofilms and treats acute infections in two animal models[J]. Antimicrobial Agents and Chemotherapy, 2018, 62(6): e02573-17.
[26] MORRIS J, KELLY N, ELLIOTT L, et al. Evaluation of bacteriophage anti-biofilm activity for potential control of orthopedic implant-related infections caused by staphylococcus aureus[J]. Surgical Infections, 2019, 20(1): 16-24.
[27] LIANG Shuang, QI Yanling, YU Huabo, et al. Bacteriophage therapy as an application for bacterial infection in China[J]. Antibiotics(Basel), 2023, 12(2): 417.
[28] FERRIOL-GONZ?LEZ C, DOMINGO-CALAP P. Phages for biofilm removal[J]. Antibiotics(Basel), 2020, 9(5): 268.
[29] TAGLIAFERRI T L, JANSEN M, HORZ H P. Fighting pathogenic bacteria on two fronts: phages and antibiotics as combined strategy [J]. Front Cell Infect Microbiol, 2019, 9: 22.
[30] FURSOV M V, ABDRAKHMANOVA R O, ANTONOVA N P, et al. Antibiofilm activity of a Broadrange recombinant endolysin LysECD7: in vitro and in vivo study[J]. Viruses, 2020, 12(5): 545.
[31] ?USIAK-SZELACHOWSKA M, WEBERD?BROWSKA B, ?ACZEK M, et al. Anti-biofilm activity of bacteriophages and lysins in chronic rhinosinusitis[J]. Acta Virologica, 2021, 65(2): 127-140.
[32] MURRAY E, DRAPER L A, ROSS R P, et al. The advantages and challenges of using endolysins in a clinical setting[J]. Viruses, 2021, 13(4): 680.
[33] PARK D W, PARK J H. Characterization of a novel phage depolymerase specific to Escherichia coli O157:H7 and biofilm control on abiotic surfaces[J].Journal of Microbiology, 2021, 59(11): 1002-1009.
[34] HUSSAIN W, YANG Xiaohan, ULLAH M, et al. Genetic engineering of bacteriophages: Key concepts, strategies, and applications[J]. Biotechnology Advances, 2023, 64: 108116.
[35] LEMON D J, KAY M K, TITUS J K, et al. Construction of a genetically modified T7Select phage system to express the antimicrobial peptide 1018[J].Journal of Microbiology, 2019, 57(6): 532-538.
[36] LANDLINGER C, TISAKOVA L, OBERBAUER V, et al. Engineered phage endolysin eliminates gardnerella biofilm without damaging beneficial bacteria in bacterial vaginosis Ex vivo[J]. Pathogens, 2021, 10(1): 54.
[37] STACHLER E, KULL A, JULIAN T R. Bacteriophage treatment before chemical disinfection can enhance removal of plastic-surface-associated Pseudomonas aeruginosa[J]. Applied and Environment Microbiology, 2021, 87(20): e0098021.