[1]卢 赞,赵红燕,李春付,等.昆明地区耐碳青霉烯铜绿假单胞菌10种膜蛋白编码基因表达的实验研究[J].现代检验医学杂志,2025,40(01):7-12.[doi:10.3969/j.issn.1671-7414.2025.01.002]
 LU Zan,ZHAO Hongyan,LI Chunfu,et al.Experimental Study on Expression of Carbapenem Resistant Pseudomonas Aeruginosa’s 10 Membrane Protein Coding Genes in Kunming[J].Journal of Modern Laboratory Medicine,2025,40(01):7-12.[doi:10.3969/j.issn.1671-7414.2025.01.002]
点击复制

昆明地区耐碳青霉烯铜绿假单胞菌10种膜蛋白编码基因表达的实验研究()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第40卷
期数:
2025年01期
页码:
7-12
栏目:
论著
出版日期:
2025-01-15

文章信息/Info

Title:
Experimental Study on Expression of Carbapenem Resistant Pseudomonas Aeruginosa’s 10 Membrane Protein Coding Genes in Kunming
文章编号:
1671-7414(2025)01-007-06
作者:
卢 赞1赵红燕1李春付1尹利民1任宝军1宋贵波2杨 旭3
(1. 昆明市第一人民医院,昆明 650221;2. 昆明医科大学第一附属医院,昆明 650032;3. 昆明医科大学第二附属医院,昆明 650101)
Author(s):
LU Zan1ZHAO Hongyan1LI Chunfu1YIN Limin1REN Baojun1SONG Guibo2YANG Xu3
(1.the First People’s Hospital of Kunming,Kunming 650221,China;2.the First Affiliated Hospital of Kunming Medical University, Kunming 650032,China;3.the Second Affiliated Hospital of Kunming Medical University, Kunming 650101,China)
关键词:
铜绿假单胞菌碳青霉烯耐药外排泵膜蛋白
分类号:
R378.991;Q786
DOI:
10.3969/j.issn.1671-7414.2025.01.002
文献标志码:
A
摘要:
目的 掌握昆明地区碳青霉烯耐药铜绿假单胞菌(CRPA)膜蛋白表达的分子流行情况,为临床合理用药及外排泵抑制剂的应用提供依据。方法 收集昆明地区四所医院2022 年10 月~ 2023 年8 月分离的铜绿假单胞菌,使用SYBR-PCR 法定量检测10 种膜蛋白编码基因mRNA 相对表达量(RE),包括mexA,B,C,D,E,F,X,Y 及oprD,M。根据头孢他啶(CAZ)、头孢吡肟(CFP)、亚胺培南(IPM)、美罗培南(MEM)耐药表型组合将菌株分为5 组,包括全敏感组(Ⅰ组),全耐药组(Ⅱ组),IPM,MEM 耐药、CAZ 及CFP 敏感组(Ⅲ组),IPM 耐药、MEM 非耐药(敏感或中介)组(Ⅳ组)和IPM,MEM 耐药、CAZ 和CFP 非耐药组(Ⅴ组),分析不同耐药表型组间各膜蛋白编码基因的RE 中位数情况。结果 共收集108 株铜绿假单胞菌,Ⅰ组24 株作为对照,84 株为碳青霉烯耐药组,包括Ⅱ组32 株,Ⅲ组22 株,Ⅳ组13 株和Ⅴ组17 株。耐药组mexD,mexE,mexF,mexX 和mexY 表达高于对照组,差异具有统计学意义(U=409.5 ~ 661.0,均P<0.05);mexA,mexB,mexC,oprD,oprM 与对照组比较,差异无统计学意义(U=767.0 ~ 1 004.5,均P>0.05)。各膜蛋白编码基因RE 在不同医院来源菌株间的表达,差异无统计学意义(H=0.914 ~ 7.407,均P>0.05)。四组不同表型中,mexA 和oprM RE 在各组无规律分布与对照组比较差异无统计学意义(UmexA=95.0 ~ 264.0,UoprM=143.0 ~ 331.0);各组mexC RE 均低于对照组,但差异无统计学意义(U=134.0 ~ 344.5,均P>0.05);mexE 和mexY RE 均高于对照组(UmexE=48.0 ~ 230.0,UmaxY=83.0 ~ 184.0),mexB 在Ⅳ组中低于对照组(U=72.0),差异具有统计学意义(均P<0.05)。mexD 和mexF 表现一致,在Ⅲ,Ⅳ,Ⅴ组表达高于对照组(UmexD=34.0 ~ 102.0,UmexF=65.0 ~ 113.0),mexX 在Ⅱ,Ⅳ,Ⅴ组表达高于对照组(U=164.0,58.0,111.0),oprD仅在Ⅲ组表达低于对照组(U=140.0),差异具有统计学意义(均P<0.05);oprD 在Ⅱ,Ⅳ,Ⅴ组中表达虽低于对照组,但差异无统计学意义(U=381.0,102.0,144.0,均P>0.05)。结论 mexCD,mexEF,mexXY 是昆明地区CRPA 主要外排泵的膜蛋白组合,通过mexD,E,F,X,Y 膜蛋白表达上调加强外排,mexAB-oprM 外排泵与该地区CRPA 碳青霉烯耐药相关性低,oprD 低表达在不产β- 内酰胺酶的菌株中与外排机制共同发挥作用,但在产酶菌株中则未见显著的低表达差异。
Abstract:
Objective To understand the membrane protein molecular epidemiology of carbapenem-resistant Pseudomonas aeruginosa (CRPA) in the region,and provide some evidence for rational drug use or application of efflux pump inhibitors. Methods Collected Pseudomonas aeruginosa isolated from four hospitals in the region from October 2022 to August 2023, and used SYBR-PCR method to quantitatively detect the relative mRNA expression (RE) levels of 10 membrane protein coding genes, including mexA, B, C, D, E, F, X, Y, and oprD, M. Then categorized the strains into five groups based on ceftazidime, cefepime, imipenem, and meropenem resistance phenotype combination,including the compassionate group (Group I),Group II with full resistance, IPM, MEM resistant, CAZ and CFP sensitive groups (Group III), IPM resistance, MEM non-resistance (sensitive or intermediate) group (Group IV), IPM, MEM resistance, CAZ and CFP non-resistance groups (Group V).The median RE of each membrane protein-coding gene was analyzed. Results A total of 108 strains of Pseudomonas aeruginosa were collected, with 24 strains in Group I as controls and 84 strains in the carbapenem resistant group, including 32 strains in Group II, 22 strains in Group III, 13 strains in Group IV, and 17 strains in Group V. The expression of mexD, mexE, mexF, mexX and mexY in the drug-resistant group was higher than that in the control group, and the differences were statistically significant (U=409.5 ~ 661.0, all P<0.05). There was no statistically significant difference in mexA, mexB, mexC, oprD and oprM with the control group (U=767.0 ~ 1004.5, all P>0.05). There was no significant difference in the expression of RE genes encoding various membrane proteins among strains from different hospitals (H=0.914 ~ 7.407, all P>0.05). Among the four different phenotypes, there was no statistically significant difference in the irregular distribution of mexA and oprM RE between each group and the control group (UmexA=95.0 ~ 264.0,UoprM =143.0 ~ 331.0). The mexC RE in each group was lower than that in the control group , but the differences were not statistically significant (U=134.0 ~ 344.5, all P>0.05). MeixE and meixY RE wer e both higher than the con trol group, and the d i ff e r ences wer e s tat i s t ical l y s igni f ican t (UmexE =48.0 ~ 230.0,UmexY=83.0 ~ 184.0). MeixB was lower than the control group in group IV (U=72.0), and the differences were statistically significant (all P<0.05). MeixD and meixF showed consistent expression, with higher expression in groups III,IV and V compared to the control group (UmeixD =34.0 ~ 102.0,UmeixF=65.0 ~ 113.0). MeixX was expressed higher in groups II, IV and V compared to the control group (U=164.0,58.0,111.0), while oprD was only expressed lower in group III than in the control group (U=140.0), with statistically significant differences (all P<0.05). Although the expression of oprD in groups II, IV and V was lower than that in the control group, the differences were not statistically significant (U=381.0,102.0,144.0,all P>0.05). Conclusion ExCD, mexEF and mexXY are the main membrane protein combinations of CRPA efflux pumps in Kunming area. Upregulation of mexD, E, F, X, and Y membrane protein expression enhanced efflux. The correlation between mexAB oprM efflux pump and carbapenem resistance in CRPA in this area was low. The low expression of oprD played a role in the efflux mechanism in strains that do not produce β-lactase, but there was no significant difference in low expression in enzyme producing strains.

参考文献/References:

[1] KYLAT R I. Pseudomonas aeruginosa necrotizing bronchopneumonia [J]. Autopsy and Case Reports, 2021, 11: e2021271.
[2] 全国细菌耐药监测网.2021 年全国细菌耐药监测报告[J]. 中华检验医学杂志,2023,46(6):566-581. China Antimicrobial Resistance Surveillance System. 2021 national antimicrobial resistance surveillance report [J]. Chinese Journal of Laboratory Medicine, 2023, 46(6): 566-581.
[3] COSENTINO F, VIALE P, GIANNELLA M. MDR/XDR/PDR or DTR? which definition best fits the resistance profile of Pseudomonas aeruginosa?[J]. Current Opinion in Infectious Diseases, 2023, 36(6): 564-571.
[4] 尚佳文,徐文娜,许南松,等.mCIM 和碳青霉烯酶抑制剂增强试验检测CRE 和CRPA 产酶表型的方法学评价[J].现代检验医学杂志,2023,38(3):165-169. SHANG Jiawen, XU Wenna, XU Nansong, et al.Methodological evaluation of mCIM and carbapenemase inhibitor-enhancing assays to detect CRE and CRPA enzyme producing phenotypes [J]. Journal of Modern Laboratory Medicine, 2023, 38(3): 165-169.
[5] LORUSSO A B, CARRARA J A, BARROSO C D N, et al. Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa [J]. International Journal of Molecular Sciences, 2022, 23(24): 15779.
[6] CACCIOTTO P, BASCIU A, OLIVA F, et al. Molecular rationale for the impairment of the MexABOprM efflux pump by a single mutation in MexA [J]. Computational and Structural Biotechnology Journal, 2022, 20: 252-260.
[7] ALCALDE-RICO M, OLIVARES-PACHECO J, HALLIDAY N, et al. The impaired quorum sensing response of Pseudomonas aeruginosa MexABOprM efflux pump overexpressing mutants is not due to non-physiological efflux of 3-oxo-C12-HSL [J]. Environmental Microbiology, 2020, 22(12): 5167-5188.
[8] IVANOV M E, FURSOVA N K, POTAPOV V D. Pseudomonas aeruginosa efflux pump superfamily (review of literature)[J]. Klinicheskaia Laboratornaia Diagnostika, 2022, 67(1): 53-58.
[9] 王生成, 杨祚明, 蔡潇阳, 等. 海南某三甲医院多重耐药铜绿假单胞菌MexAB-OprM, MexCD-OprJ,MexEFOprN,MexXY-OprM 表达及与耐药表型的关系研究[J]. 实用药物与临床, 2020, 23(3): 247-252. WANG Shengcheng, YANG Zuoming, CAI Xiaoyang, et al. Expression of MexAB-OprM,MexCD-OprJ, MexEF-OprN and MexXY-OprM in multidrugresistant Pseudomonas aeruginosa and their relationship with drug resistance phenotypes in a Third Class A Hospital in Hainan [J]. Practical Pharmacy and Clinical Remedies, 2020, 23(3): 247-252.
[10] NOLAN L M, ALLSOPP L P. Antimicrobial weapons of Pseudomonas aeruginosa [J]. Advances in Experimental Medicine and Biology, 2022, 1386: 223-256.
[11] P?REZ-V?ZQUEZ M,L?PEZ-CAUSAP? C, CORRAL-LUGO A,et al. Mutation analysis in regulator DNA-binding regions for antimicrobial efflux pumps in 17 000 Pseudomonas aeruginosa genomes [J]. Microorganisms,2023,11(10):2486.
[12] 冯金鑫,张瑞琴.3 所综合性医院分离的多重耐药铜绿假单胞菌外排泵MexAB-OprM 的表达分析[J].西北药学杂志,2021,36(5):833-837. FENG Jinxin, ZHANG Ruiqin. Expression analysis of MexAB-OprM in multidrug-resistant Pseudomonas aeruginosa effluent pump isolated from 3 general hospitals [J] . Northwest Pharmaceutical Journal, 2021, 36(5): 833-837.
[13] COSERIU R L, MARE A D, TOMA F, et al. Uncovering the resistance mechanisms in extendeddrug-resistant Pseudomonas aeruginosa clinical isolates: insights from gene expression and phenotypic tests[J]. Microorganisms, 2023, 11(9): 2211.
[14] YOON E J, JEONG S H. Mobile carbapenemase genes in Pseudomonas aeruginosa [J]. Frontiers in Microbiology, 2021, 12: 614058.
[15] SALMON-ROUSSEAU A, MARTINS C, BLOT M, et al. Comparative review of imipenem/cilastatin versus meropenem[J]. Medecine et Maladies Infectieuses, 2020, 50(4): 316-322.
[16] WAN Dapeng, JING Xiaopeng, ZHOU Huan, et al. Differences between meropenem and imipenem disk to detect carbapenemase in gram-negative bacilli using simplified carbapenem inactivation method[J]. Journal of Infection and Chemotherapy, 2020, 26(6): 636-639.
[17] 谢国艳,蔡枫,梁斌,等.mCIM 法与PAE-MHT 法检测铜绿假单胞菌产金属β- 内酰胺酶的性能评价[J]. 现代检验医学杂志,2020,35(1):57-59, 64. XIE Guoyan, CAI Feng, LIANG Bin, et al. Evaluation of modified carbapenem inactivation method and Pseudomonas aeruginosa-Moeified Hodge test for detection of metallo-lactamase-producing Pseudomonas aeruginosa [J]. Journal of Modern Laboratory Medicine, 2020, 35(1): 57-59, 64.
[18] DEY D, KAVANAUGH L G, CONN G L. Antibiotic substrate selectivity of Pseudomonas aeruginosa MexY and MexB efflux systems is determined by a Goldilocks affinity[J]. Antimicrobial Agents and Chemotherapy, 2020, 64(8): e00496-20.
[19] VANSCOY B,CONDE H,COTRONEO N ,et al.1281. An evaluation of Tebipenem in vitro activity against a panel of Pseudomonas aeruginosa isolates with efflux, AmpC, and OprD mutations[J].Open Forum Infectious Diseases, 2021, 8(Supplement1): S728-S730.
[20] CATTE A, RAMASWAMY V K, VARGIU A V, et al. Common recognition topology of mex transporters of Pseudomonas aeruginosa revealed by molecular modelling [J]. Frontiers in Pharmacology, 2022, 13: 1021916.
[21] AL RASHED N, JOJI R M, SAEED N K, et al. Detection of overexpression of efflux pump expression in fluoroquinolone-resistant Pseudomonas aeruginosa isolates[J]. International Journal of Applied & Basic Medical Research, 2020, 10(1): 37-42.

相似文献/References:

[1]邱晓明,林锦骠,黄 尔,等.黏液型与非黏液型铜绿假单胞菌Cif基因表达研究[J].现代检验医学杂志,2016,31(03):19.[doi:10.3969/j.issn.1671-7414.2016.03.006]
 QIU Xiao-ming,LIN Jin-piao,HUANG Er,et al.Investigation of Cif Gene Expression between Mucoid and Non-mucoid Pseudonmonas Aeruginosa[J].Journal of Modern Laboratory Medicine,2016,31(01):19.[doi:10.3969/j.issn.1671-7414.2016.03.006]
[2]陈乔彬,刘爱胜,文 艳.深圳地区三级区属医院铜绿假单胞菌感染分布及耐药性分析[J].现代检验医学杂志,2015,30(03):147.[doi:10.3969/j.issn.1671-7414.2015.03.045]
 CHEN Qiao-bin,LIU Ai-sheng,WEN Yan.Infection Distribution and Drug Resistance Analysis of Pseudomonas Aeruginosa in Third District Hospital in Shenzhen Area[J].Journal of Modern Laboratory Medicine,2015,30(01):147.[doi:10.3969/j.issn.1671-7414.2015.03.045]
[3]多丽波,李桂玲,陈淑娟,等.铜绿假单胞菌金属酶及整合酶的检测[J].现代检验医学杂志,2015,30(01):34.[doi:10.3969/j.issn.1671-7414.2015.01.010]
 DUO Li-bo,LI Gui-ling,CHEN Shu-Juan,et al.Detection of Metallo-β-Lactamases and Integrasesin from Pseudomonas Aeruginosa Isolates[J].Journal of Modern Laboratory Medicine,2015,30(01):34.[doi:10.3969/j.issn.1671-7414.2015.01.010]
[4]罗史科,刘鲜花,朱平安,等.铜绿假单胞菌对耐喹诺酮药物质粒基因的研究[J].现代检验医学杂志,2015,30(01):39.[doi:10.3969/j.issn.1671-7414.2015.01.011]
 LUO Shi-ke,LIU Xian-hua,ZHU Ping-an,et al.Research on Pseudomonas Aeruginosa Quinolone-resistant Plasmid Genes[J].Journal of Modern Laboratory Medicine,2015,30(01):39.[doi:10.3969/j.issn.1671-7414.2015.01.011]
[5]谢国艳,高志生,许 俊,等.Cica-Beta Test试剂盒检测 耐亚胺培南铜绿假单胞菌金属β-内酰胺酶的评估[J].现代检验医学杂志,2015,30(01):123.[doi:10.3969/j.issn.1671-7414.2015.01.036]
 XIE Guo-yan,GAO Zhi-sheng,XU Jun,et al.Evaluation of Cica-Beta Test Kit for Detection of Metallo-β-Lactamase-Producing Pseudomonas Aeruginosa[J].Journal of Modern Laboratory Medicine,2015,30(01):123.[doi:10.3969/j.issn.1671-7414.2015.01.036]
[6]李瑜珍,曾学辉,莫 莉,等.VITEK2 Compact全自动微生物分析仪对黏液型和非黏液型铜绿假单胞菌药敏检测评价[J].现代检验医学杂志,2016,31(04):121.[doi:10.3969/j.issn.1671-7414.2016.04.034]
 LI Yu-zhen,ZENG Xue-hui,Mo-li,et al.Evaluation of Drug Susceptibility Test to Mucoid Pseudomonas Aeruginosa and Non-Mucoid Pseudomonas Aeruginosa with VITEK2 Compact Automatic Microbiology Analyzer[J].Journal of Modern Laboratory Medicine,2016,31(01):121.[doi:10.3969/j.issn.1671-7414.2016.04.034]
[7]王 静,陈 葳,曾晓艳,等.不同标本来源铜绿假单胞菌对β-内酰胺酶耐药表型的差异性分析[J].现代检验医学杂志,2017,32(03):63.[doi:10.3969/j.issn.1671-7414.2017.03.017]
 WANG Jing,CHEN Wei,ZENG Xiao-yan,et al.Analysis of the Difference of β-Lactamase-Resistant Phenotypes by Pseudomonas Aeruginosa from Different Specimens[J].Journal of Modern Laboratory Medicine,2017,32(01):63.[doi:10.3969/j.issn.1671-7414.2017.03.017]
[8]谢国艳,肖 敏.铜绿假单胞菌D-试验阳性及阴性菌株产β-内酰胺酶的差异性分析[J].现代检验医学杂志,2018,33(03):130.[doi:10.3969/j.issn.1671-7414.2018.03.033]
 XIE Guo-yan,XIAO Min.Study on the Difference of β-Lactamases-Producing in D-Test Positive and D-Test Negative Pseudomonas Aeruginosa[J].Journal of Modern Laboratory Medicine,2018,33(01):130.[doi:10.3969/j.issn.1671-7414.2018.03.033]
[9]武爱荣,杨 乐.VITEK-2 Compact 检测奇异变形杆菌、摩根摩根菌、铜绿假单胞菌的部分药敏结果准确性评价[J].现代检验医学杂志,2020,35(06):106.[doi:doi:10.3969/j.issn.1671-7414.2020.06.026]
 WU Ai-rong,YANG Le.Accuracy Evaluation of Partial Drug Sensitivity Results of Vitek-2 CompactDetection for Proteus Singularis, Morgan Morgan and Pseudomonas Aeruginosa[J].Journal of Modern Laboratory Medicine,2020,35(01):106.[doi:doi:10.3969/j.issn.1671-7414.2020.06.026]
[10]黄秋兰,钱巧慧,范德平,等.鱼腥草联合亚胺培南对碳青霉烯耐药铜绿假单胞菌杀菌效果的体外研究[J].现代检验医学杂志,2021,36(03):118.[doi:10.3969/j.issn.1671-7414.2021.03.027]
 HUANG Qiu-lana,QIAN Qiao-hui,FAN De-pinga,et al.Vitro Study on the Bactericidal Effect of Houttuynia Cordata Combined withImipenem Against Carbapenem Resistant Pseudomonas Aeruginosa[J].Journal of Modern Laboratory Medicine,2021,36(01):118.[doi:10.3969/j.issn.1671-7414.2021.03.027]

备注/Memo

备注/Memo:
基金项目:昆明市卫生健康委员会卫生科研项目(2022-11-01-022)。
作者简介:卢赞(1978-),男,学士,副主任技师,研究方向:临床微生物检验,E-mail:luzan_km@163.com。
更新日期/Last Update: 2025-01-15