参考文献/References:
[1] STEINBACH M, NEUPANE K, AZIZ M, et al. Multiple myeloma in young patients: a scoping review[J]. Clinical Lymphoma, Myeloma & Leukemia, 2024, 24(1): 15-22.
[2] 任梅, 石培民, 谢静, 等. 血清CXCL9 和IL-34 水平检测对多发性骨髓瘤患者的疗效监测及其预后价值[J]. 现代检验医学杂志, 2023, 38(5): 127-132. REN Mei, SHI Peimin, XIE Jing, et al. Serum CXCL9 and IL-34 levels in multiple myeloma patients for monitoring efficacy and prognostic value[J]. Journal of Modern Laboratory Medicine, 2023, 38(5): 127-132.
[3] WU Yilan, WANG Han. LncRNA NEAT1 promotes dexamethasone resistance in multiple myeloma by targeting miR-193a/MCL1 pathway[J]. Journal of Biochemical and Molecular Toxicology, 2018, 32(1): e22008.
[4] CHEN Ting, SUN Zhengxu, CUI Yunqi, et al. Identification of long noncoding RNA NEAT1 as a key gene involved in the extramedullary disease of multiple myeloma by bioinformatics analysis[J]. Hematology, 2023, 28(1): 2164449.
[5] 罗蔓琳, 郑兴萍, 杨娅娟, 等. LncRNA FGD5-AS1靶向miR-195-5p 调控弥漫型大B 细胞淋巴瘤细胞活性[J]. 中国免疫学杂志, 2022, 38(18): 2240-2245. LUO Manlin, ZHENG Xingping, YANG Yajuan, et al. LncRNA FGD5-AS1 regulates cell activity of diffuse large B-cell lymphoma by targeting miR-195-5p[J]. Chinese Journal of Immunology, 2022, 38(18): 2240-2245.
[6] MOURA S R, ABREU H, CUNHA C, et al. Circulating microRNAs correlate with multiple myeloma and skeletal osteolytic lesions[J]. Cancers, 2021, 13(21): 5258.
[7] HICKEY C J, SCHWIND S, RADOMSKA H S, et al. Lenalidomide-mediated enhanced translation of C/EBPα-p30 protein up-regulates expression of the antileukemic microRNA-181a in acute myeloid leukemia[J]. Blood, 2013, 121(1): 159-169.
[8] SHAMSASENJAN K, OTSUYAMA K I, ABROUN S, et al. IL-6-induced activation of MYC is responsible for the downregulation of CD33 expression in CD33+ myeloma cells[J]. International Journal of Hematology, 2009, 89(3): 310-318.
[9] 李悦, 徐焕铭, 樊华. 基于TCGA 数据对60 岁以上不同分层急性髓系白血病患者相关LncRNA 的基因信息学分析[J]. 现代检验医学杂志, 2020, 35(3): 20-25. LI Yue, XU Huanming, FAN Hua. Genetic informatics analysis of LncRNA related to patients with different stratified acute myeloid leukemia over 60 years based on TCGA database[J]. Journal of Modern Laboratory Medicine, 2020, 35(3): 20-25.
[10] YAN Huiwen, WANG Zhi, SUN Ya o , e t a l . Cytoplasmic NEAT1 suppresses AML stem cell selfrenewal and leukemogenesis through inactivation of Wnt signaling[J]. Advanced Science Weinheim Baden Wurttemberg Germany, 2021, 8(22): e2100914.
[11] YUAN Jun, YANG Jie, WANG Ruicang, et al. LncRNA NEAT1 regulate diffuse large B-cell lymphoma by targeting miR-495-3p/PD-L1 axis[J]. Immunopharmacology and Immunotoxicology, 2022, 44(3): 429-436.
[12] XU H, LI J, ZHOU Z G. NEAT1 promotes cell proliferation in multiple myeloma by activating PI3K/AKT pathway[J]. European Review for Medical and Pharmacological Sciences, 2018, 22(19): 6403-6411.
[13] LI Shengli, GUO Wenwen, GENG Huayun, et al. LINC00511 exacerbated T-cell acute lymphoblastic leukemia via miR-195-5p/LRRK1 axis[J]. Bioscience Reports, 2020, 40(5): BSR20193631.
[14] ALMEIDA R S, COSTA E SILVA M, COUTINHO L L, et al. MicroRNA expression profiles discriminate childhood T- from B-acute lymphoblastic leukemia[J]. Hematological Oncology, 2019, 37(1): 103-112.
[15] YUAN J, HE R, ALKHATEEB H B. Sporadic and familial acute myeloid leukemia with CEBPA mutations[J]. Current Hematologic Malignancy Reports, 2023, 18(5): 121-129.
[16] 刘青青, 李宜蔷, 程纬民. PI3K/AKT/mTOR 信号通路在多发性骨髓瘤中作用机制的研究进展[J]. 中国实验血液学杂志, 2024, 32(1): 292-296. LIU Qingqing, LI Yiqiang, CHENG Weimin. Research progress on the mechanism of PI3K/AKT/mTOR signaling pathway in multiple myeloma[J]. Journal of Experimental Hematology, 2024, 32(1): 292-296.
[17] CHEN Ping, WU Sungui, DONG Xiaoqing, et al. Formosanin C induces autophagy-mediated apoptosis in multiple myeloma cells through the PI3K/AKT/mTOR signaling pathway[J]. Hematology, 2022, 27(1): 977-986.
[18] HEINEMANN L, M?LLERS K M, AHMED H M M, et al. Inhibiting PI3K-AKT-mTOR signaling in multiple Myeloma-Associated mesenchymal stem cells impedes the proliferation of multiple myeloma cells[J]. Frontiers in Oncology, 2022, 12: 874325.
[19] DOU Renjie, QIAN Jinjun, WU Wei, et al. Suppression of steroid 5α-reductase type I promotes cellular apoptosis and autophagy via PI3K/Akt/mTOR pathway in multiple myeloma[J]. Cell Death & Disease, 2021, 12(2): 206.
[20] 彭逸伦, 李杨, 王晓桃. 多发性骨髓瘤细胞通过PI3K/AKT 信号通路促进M2 巨噬细胞极化的机制研究[J]. 中国全科医学, 2024, 27(8): 978-984, 994. PENG Yilun, LI Yang, WANG Xiaotao. Study on the mechanisms of multiple myeloma cells promoting M2 macrophage polarization through PI3K/AKT signaling pathway[J]. Chinese General Practice, 2024, 27(8): 978-984, 994.
相似文献/References:
[1]韩秀蕊,杨娣娣,李艳春,等.多发性骨髓瘤患者骨髓涂片与骨髓活检同步检查的比较分析[J].现代检验医学杂志,2015,30(03):129.[doi:10.3969/j.issn.1671-7414.2015.03.039]
HAN Xiu-rui,YANG Di-di,LI Yan-chun,et al.Comparative Analysis of Bone Marrow Smears and Biopsies
Synchronous Check for Myeloma Patients[J].Journal of Modern Laboratory Medicine,2015,30(01):129.[doi:10.3969/j.issn.1671-7414.2015.03.039]
[2]邱 爽,孟瑞芳,蒋筱漪,等.血清免疫固定电泳、蛋白电泳、免疫球蛋白及轻链定量在诊断多发性骨髓瘤中的临床应用[J].现代检验医学杂志,2015,30(02):61.[doi:10.3969/j.issn.1671-7414.2015.02.019]
QIU Shuang,MENG Rui-fang,JIANG Xiao-yi,et al.Clinical Application of Immunofixtion Electrophoresis,
Serum Protein Electrophoresis and Immunoglobulins and Light Chain
Quantitative Analysis in the Diagnosis of Multiple Myeloma[J].Journal of Modern Laboratory Medicine,2015,30(01):61.[doi:10.3969/j.issn.1671-7414.2015.02.019]
[3]李 瑛,李 军.多发性骨髓瘤患者血清中IL-6与IL-27水平监测的临床应用[J].现代检验医学杂志,2016,31(04):87.[doi:10.3969/j.issn.16717-414.2016.04.023]
LI Ying,LI Jun.Clinical Application of Monitoring IL-6 and IL-27 Levels
in Patients with Multiple Myeloma[J].Journal of Modern Laboratory Medicine,2016,31(01):87.[doi:10.3969/j.issn.16717-414.2016.04.023]
[4]郭进京,胡林辉,陶千山,等.红细胞分布宽度在多发性骨髓瘤患者预后分期中的价值[J].现代检验医学杂志,2017,32(03):34.[doi:10.3969/j.issn.1671-7414.2017.03.009]
GUO Jin-jing,HU Lin-hui,TAO Qian-shan,et al.Value of Red Cell Distribution Width
in the Prognosis of Patients with Multiple Myeloma[J].Journal of Modern Laboratory Medicine,2017,32(01):34.[doi:10.3969/j.issn.1671-7414.2017.03.009]
[5]谭 奎,沈婵娟,张 玲,等.多发性骨髓瘤患者骨髓CD269和CD317基因的差异性表达研究[J].现代检验医学杂志,2017,32(06):64.[doi:10.3969/j.issn.1671-7414.2017.06.001]
TAN Kui,SHEN Chan-juan,ZHANG Ling,et al.Differential Expression of CD269 and CD317 Genes
in Bone Marrow of Patients with Multiple Myeloma[J].Journal of Modern Laboratory Medicine,2017,32(01):64.[doi:10.3969/j.issn.1671-7414.2017.06.001]
[6]盘国雄,谭才燕,何嘉颖,等.多发性骨髓瘤患者血清中lncRNA PCAT-1的表达水平与临床预后研究[J].现代检验医学杂志,2018,33(01):72.[doi:10.3969/j.issn.1671-7414.2018.01.001]
PAN Guo-xiong,TAN Cai-yan,HE Jia-ying,et al.Serum LncRNA PCAT-1 Expression Level of Patients
with Multiple Myeloma and Clinical Value[J].Journal of Modern Laboratory Medicine,2018,33(01):72.[doi:10.3969/j.issn.1671-7414.2018.01.001]
[7]刘玉霞,胡国瑜,袁朝晖,等.CD269和CD317在多发性骨髓瘤中的表达及临床意义[J].现代检验医学杂志,2018,33(02):58.[doi:10.3969/j.issn.1671-7414.2018.02.001]
LIU Yu-xia,HU Guo-yu,YUAN Chao-hui,et al.Expression of CD269 and CD317 in Multiple Myeloma
and Its Clinical Significance[J].Journal of Modern Laboratory Medicine,2018,33(01):58.[doi:10.3969/j.issn.1671-7414.2018.02.001]
[8]张 蓉,李国辉,刘小五,等.初诊多发性骨髓瘤患者外周血淋巴细胞绝对值/ 单核细胞绝对值比值在预测临床预后的价值研究[J].现代检验医学杂志,2020,35(01):101.[doi:10.3969/j.issn.1671-7414.2020.01.027]
ZHANG Rong,LI Guo-hui,LIU Xiao-wu,et al.Value of Peripheral Blood Lymphocyte Absolute Value/Monocyte Absolute
Value Ratio in Predicting Clinical Prognosis of Newly Diagnosed MultipleMyeloma Patients[J].Journal of Modern Laboratory Medicine,2020,35(01):101.[doi:10.3969/j.issn.1671-7414.2020.01.027]
[9]霍 豆,秦 爽,吴永昌,等.血清总轻链与游离轻链定量检测在多发性骨髓瘤诊断中的临床价值探讨[J].现代检验医学杂志,2020,35(04):87.[doi:10.3969/j.issn.1671-7414.2020.04.021]
HUO Dou,QIN Shuang,WU Yong-chang,et al.Clinical Value of Quantitative Detection of sTLC and sFLC in Diagnosis of Multiple Myeloma[J].Journal of Modern Laboratory Medicine,2020,35(01):87.[doi:10.3969/j.issn.1671-7414.2020.04.021]
[10]何 进,张 艳,申娴娟,等.多发性骨髓瘤患者血清可溶性PD-L1水平在辅助诊断及临床分型的价值研究[J].现代检验医学杂志,2021,36(02):15.[doi:doi:10.3969/j.issn.1671-7414.2021.02.004]
HE Jin,ZHANG Yan,SHEN Xian-juan,et al.Value of Blood Soluble PD-L1 in the Auxiliary Diagnosis and Clinical Subtype of Multiple Myeloma[J].Journal of Modern Laboratory Medicine,2021,36(01):15.[doi:doi:10.3969/j.issn.1671-7414.2021.02.004]