参考文献/References:
[1] HAN Dong, HE Taiping, YU Yong, et al. Diagnosis of active pulmonary tuberculosis and community acquired pneumonia using convolution neural network based on transfer learning[J]. Academic Radiology, 2022, 29(10): 1486-1492.
[2] ZIMMER A J , LAINATI F, AGUILERA VASQUEZ N,et al. Biomarkers that correlate with active pulmonary tuberculosis treatment response: a systematic review and meta-analysis [J]. Journal of Clinical Microbiology, 2022, 60(2): e0185921.
[3] P?OCI?SKI P, MACIOS M, HOUGHTON J, et al. Proteomic and transcriptomic experiments reveal an essential role of RNA degradosome complexes in shaping the transcriptome of Mycobacterium tuberculosis[J]. Nucleic Acids Research, 2019, 47(11): 5892-5905.
[4] YU Xiaoli, JIANG Shengsheng, LI Yang, et al. Development of a new cellular immunological detection method for tuberculosis based on HupB protein induced IL-6 release test [J]. Frontiers in Microbiology, 2023, 14: 1148503.
[5] 中华人民共和国国家卫生和计划生育委员会.WS288-2017 肺结核诊断 [S].( 2017-11-09)[2018-05-01]http://www.nhc.gov.cn/wjw/s9491/201712/a45 2586fd21d4018b0ebc00b89c06254.shtml. National Health and Family Planning Commission of the People’s Republic of China. WS288-2017: Diagnosis for pulmonary tuberculosis [S]( 2017-11-09)[2018-05-01] http://www.nhc.gov.cn/wjw/s9491/201712/a452586fd21d 4018b0ebc00b89c06254.shtml.
[6] RABAAN A A, MUTAIR A A, ALBAYAT H, et al. Tools to alleviate the drug resistance in Mycobacterium tuberculosis[J]. Molecules, 2022, 27(20): 6985.
[7] BESPYATYKH J, SHITIKOV E, BESPIATYKH D, et al. Metabolic changes of Mycobacterium tuberculosis during the anti-tuberculosis therapy[J]. Pathogens, 2020, 9(2): 131.
[8] 梁津, 刘轾彬, 梁成员, 等. 初诊活动性肺结核患者血浆IL-6,IL-17,IL-37 及TIM-3 水平表达及其临床意义[J]. 现代检验医学杂志,2021,36(6):179-182. LIANG Jin, LIU Zhibin, LIANG Chengyuan, et al. Expression and clinical significance of plasma IL-6, IL-17, IL-37 and TIM-3 in patients with newly diagnosed active pulmonary tuberculosis[J]. Journal of Modern Laboratory Medicine, 2021, 36(6): 179-182.
[9] LIU Dongxin, HUANG Fei, ZHANG Guoliang, et al. Whole-genome sequencing for surveillance of tuberculosis drug resistance and determination of resistance level in China[J]. Clinical Microbiology and Infection, 2022, 28(5): 731.e9-731.e15.
[10] MZINZA D T, SLOAN D J, JAMBO K C, et al. Kinetics of Mycobacterium tuberculosis-specific IFN-γ responses and sputum bacillary clearance in HIV-infected adults during treatment of pulmonary tuberculosis [J]. Tuberculosis (Edinburgh, Scotland), 2015, 95(4): 463-469.
[11] MACKIE G A. RNase E: at the interface of bacterial RNA processing and decay[J]. Nature Reviews Microbiology, 2013, 11(1): 45-57.
[12] LAALAMI S, CAVAIUOLO M, ROQUE S, et al. Escherichia coli RNase E can efficiently replace RNase Y in Bacillus subtilis [J]. Nucleic Acids Research, 2021, 49(8): 4643-4654.
[13] LEE J, SHIN E, YEOM J H, et al. Regulator of RNase E activity modulates the pathogenicity of Salmonella typhimurium[J].Microbial Pathogenesis, 2022, 165: 105460.
[14] ZHOU Ying, SUN Huaming, RAPIEJKO A R, et al. Mycobacterial RNase E cleaves with a distinct sequence preference and controls the degradation rates of most Mycolicibacterium smegmatis mRNAs [J]. Journal of Biological Chemistry, 2023, 299(11): 105312.
[15] HUGHES D. Using the power of genetic suppressors to probe the essential functions of RNase E[J]. Current Genetics, 2016, 62(1): 53-57.
[16] IFILL G, BLIMKIE T, LEE A H Y, et al. RNase III and RNase E influence posttranscriptional regulatory networks involved in virulence factor production, metabolism, and regulatory RNA processing in Bordetella pertussis[J]. mSphere, 2021, 6(4): e0065021.
[17] MARDLE C E, GODDARD L R, SPELMAN B C, et al. Identification and analysis of novel small molecule inhibitors of RNase E: implications for antibacterial targeting and regulation of RNase E [J]. Biochemistry and Biophysics Reports, 2020, 23: 100773.
[18] SANCHEZ-GARRIDO J, RUANO-GALLEGO D, CHOUDHARY J S, et al. The type III secretion system effector network hypothesis[J]. Trends in Microbiology, 2022, 30(6): 524-533.
[19] GREEN K D, BISWAS T, PANG A H, et al. Acetylation by Eis and deacetylation by Rv1151c of Mycobacterium tuberculosis HupB: biochemical and structural insight[J]. Biochemistry, 2018, 57(5): 781-790.
[20] GRIEGO A, DOUCH? T, GIANETTO Q G, et al. RNase E and HupB dynamics foster mycobacterial cell homeostasis and fitness[J]. iScience, 2022, 25(5): 104233.
[21] CHOUDHURY M, VIRIVINTI J, KANDI S, et al. Th2 immune response by the iron-regulated protein HupB of Mycobacterium tuberculosis[J]. the Indian Journal of Tuberculosis, 2022, 69(1): 90-99.
[22] SINGH N, SHARMA N, SINGH P, et al. HupB, a nucleoid-associated protein, is critical for survival of Mycobacterium tuberculosis under host-mediated stresses and for enhanced tolerance to key first-line antibiotics [J]. Frontiers in Microbiology, 2022, 13:937970.