[1]张乔盟,杨蕊菲,冯飞雪,等.原发性肝细胞癌相关风险评估模型的最新研究进展[J].现代检验医学杂志,2025,40(01):203-207.[doi:10.3969/j.issn.1671-7414.2025.01.039]
 ZHANG Qiaomeng,YANG Ruifei,FENG Feixue,et al.Latest Research Progress on Risk Scoring Models for Primary Hepatocellular Carcinoma[J].Journal of Modern Laboratory Medicine,2025,40(01):203-207.[doi:10.3969/j.issn.1671-7414.2025.01.039]
点击复制

原发性肝细胞癌相关风险评估模型的最新研究进展()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第40卷
期数:
2025年01期
页码:
203-207
栏目:
综述
出版日期:
2025-01-15

文章信息/Info

Title:
Latest Research Progress on Risk Scoring Models for Primary Hepatocellular Carcinoma
文章编号:
1671-7414(2025)01-203-05
作者:
张乔盟1杨蕊菲1冯飞雪12张雨馨1王战争2周嘉迪2马艳侠1
(1. 陕西中医药大学医学技术学院,陕西咸阳 712046; 2. 陕西中医药大学附属医院,陕西咸阳 712000)
Author(s):
ZHANG Qiaomeng1 YANG Ruifei1 FENG Feixue12 ZHANG Yuxin1 WANG Zhanzheng2 ZHOU Jiadi2 MA Yanxia1
(1. College of Medical Technology, Shaanxi University of Chinese Medicine, Shaanxi Xianyang 712046, China; 2. Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi Xianyang 712000, China)
关键词:
原发性肝癌肝细胞癌风险评估模型
分类号:
R735.7;R730.43
DOI:
10.3969/j.issn.1671-7414.2025.01.039
文献标志码:
A
摘要:
肝细胞癌(HCC)是世界上最常见的恶性肿瘤之一。目前,超声结合生物标志物甲胎蛋白(AFP))的传统早筛方式在灵敏度和特异度方面存在不足。近年来,基于统计学方法的肝癌风险评估模型因具有效能良好、非侵入性和易于推广等诸多优点而被广泛的开发和验证。目前,针对慢性肝病患者、乙型丙型肝炎患者、肝硬化患者以及普通人群都建立了适应其特点的肝癌风险评估模型。该综述的目的是通过分析目前肝癌风险评估模型的研究现状及发展,为临床诊疗和科研提供帮助。
Abstract:
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors worldwide. The traditional early screening modality of ultrasound, when combined with the biomarker alpha-fetoprotein (AFP), is deficient in sensitivity and specificity. In recent years, HCC risk assessment models based on statistical methods have been widely developed and validated due to advantages such as good efficacy, non-invasiveness, and ease of generalization. Currently, HCC risk assessment models adapted to the characteristics of patients with chronic liver disease, patients with hepatitis B and C, patients with cirrhosis, and the general population have been developed. The purpose of this review is to assist clinical diagnosis treatment, and scientific research by analyzing the current research status and development of liver cancer risk assessment models.

参考文献/References:

[1] HAN Bingfeng, ZHENG Rongshou, ZENG Hongmei, et al. Cancer incidence and mortality in China, 2022 [J]. Journal of the National Cancer Center, 2024,4(1):47-53.
[2] 廖星美, 赵思如, 戴文聪, 等. 肝癌早诊代谢组学研究进展[J]. 中华肝脏病杂志, 2022, 30(8):803-808. LIAO Xingmei, ZHAO Siru, DAI Wencong, et al. Research advances of metabolomics in early diagnosis of hepatocellular carcinoma [J]. Chinese Journal of Hepatology, 2022. 30(8): 803-808.
[3] MA Xiao, YANG Yang, TU Hong, et al. Risk prediction models for hepatocellular carcinoma in different populations [J]. Chinese Journal of Cancer Research, 2016, 28(2): 150-160.
[4] 莫航沣, 陈亚萍, 韩慧, 等. 临床预测模型研究方法与步骤 [J]. 中国循证医学杂志, 2024, 24(2): 228-236. MO Hangfeng, CHEN Yaping, HAN Hui, et al. methods and procedures of clinical predictive Model [J]. Chinese Journal of Evidence-based Medicine, 2024, 24(2): 228-236.
[5] 中国康复医学会医学检验与康复专业委员会, 上海市医学会分子诊断专科分会, 上海市免疫学会肿瘤免疫分会, 等. 肝癌三项(AFP、AFP-L3%、DCP)与GALAD、类GALAD 模型临床应用专家共识 [J].检验医学, 2023, 38(7): 607-623. Clinical Laboratory Society of Chinese Association for Rehabilitation Medicine, Molecular Diagnostics Society of Shanghai Medical Assciation, Tumor Immunology Branch of Shanghai Society for Immunology, et al. Expert consensus on the clinical application of AFP, AFP-L3% and DCP using GALAD and GALAD-like models in hepatocellular carcinoma [J]. Laboratory Medicine, 2023, 38(7): 607-623.
[6] 刘国振, 陈秀余, 张修欢. 血清miR-122-5p,miR-486-5p,AFP 及AFP-L3 水平联合检测对原发性肝癌的诊断价值 [J]. 现代检验医学杂志, 2022, 37(1): 82-87. LIU Guozhen, CHEN Xiuyu, ZHANG Xiuhuan. Value of combined detection of serum miR-122-5p, miR-486-5p, AFP and AFP-L3 levels in the diagnosis of primary liver cancer [J]. Journal of Modern Laboratory Medicine, 2022, 37(1): 82-87.
[7] 吴良银, 李文丽, 刘俊. 基于GEO 数据的病毒相关性肝癌潜在生物基因标志物的筛选及生物信息学分析 [J]. 现代检验医学杂志, 2021, 36(6): 106-110. WU Liangyin, LI Wenli, LIU Jun. Screening and bioinformatics analysis of potential biomarkers for viral-associated hepatocellular carcinoma based on GEO data [J]. Journal of Modern Laboratory Medicine, 2021, 36(6): 106-110.
[8] 邢文静, 卢相琴, 齐敬聪, 等. 血清高尔基体糖蛋白73与MIF 水平联合检测对原发性肝癌的诊断和预后价值研究 [J]. 现代检验医学杂志, 2022, 37(2): 66-70, 75. XING Wenjing, LU Xiangqin, QI Jingcong, et al.Study on the diagnostic and prognostic value of serum Golgi- glycoprotein 73 combined with MIF level in primary liver cancer [J]. Journal of Modern Laboratory Medicine, 2022, 37(2): 66-70, 75.
[9] FENG Xiashuang, LI N, WANG G, et al. Development of a liver cancer risk prediction model for the general population in China: a potential tool for screening [J]. Annals of OnCology, 2019, 30(supplement.q): ix46-ix47.
[10] JOHNSON P J, PIRRIE S J, COX T F, et al. The detection of hepatocellular carcinoma using a prospectively developed and validated model based on serological biomarkers [J]. Cancer Epidemiology, Biomarkers & Prevention, 2014, 23(1): 144-153.
[11] YANG Judong, ADDISSIE B D, MARA K C, et al. GALAD score for hepatocellular carcinoma detection in comparison with liver ultrasound and proposal of GALADUS score [J]. Cancer Epidemiology, Biomarkers & Prevention, 2019, 28(3): 531-538.
[12] 吴小娅, 李克诚, 李纯建, 等. GALAD 模型在中国肝癌人群中的诊断价值研究 [J]. 中国卫生检验杂志,2022, 32 (15):1871-1874. WU Xiaoya, LI Kecheng, LI Chunjian, et al.The diagnostic value of GALAD model in the Chinese population with hepatocellular carcinoma [J]. Chinese Journal of Health Laboratory Technology, 2022, 32 (15):1871-1874.
[13] GUAN Mingcheng, ZHANG Shiyu, DING Qian, et al. The performance of GALAD score for diagnosing hepatocellular carcinoma in patients with chronic liver diseases: a systematic review and meta-analysis [J]. Journal of Clinical Medicine, 2023, 12(3): 949.
[14] SHARMA S A, KOWGIER M, HANSEN B E, et al. Toronto HCC risk index: a validated scoring system to predict 10-year risk of HCC in patients with cirrhosis [J]. Journal of Hepatology, 2018, 68(1): 92-99.
[15] ZHANG Huixian, ZHU Jinzhou, XI Liting, et al. Validation of the Toronto hepatocellular carcinoma risk index for patients with cirrhosis in China: a retrospective cohort study [J]. World Journal of Surgical Oncology, 2019, 17(1): 75.
[16] YANG H I, YUEN M F, ChAN L Y, et al. Risk estimation for hepatocellular carcinoma in chronic hepatitis B (REACH-B): development and validation of a predictive score [J]. the Lancet Oncology, 2011, 12(6): 568-574.
[17] COSTA A P D, DA SILVA M A C H, CASTRO R S, et al. PAGE-B and REACH-B predicts the risk of developing hepatocellular carcinoma in chronic hepatitis B patients from northeast, Brazil [J]. Virusesbasel, 2022, 14(4): 732.
[18] KAUR S P, TALAT A, KARIMI-SARI H, et al. Hepatocellular carcinoma in hepatitis B virus-infected patients and the role of hepatitis B surface antigen (HBsAg) [J]. Journal of Clinical Medicine, 2022, 11(4): 1126.
[19] VOULGARIS T, PAPATHEODORIDI M, LAMPERTICO P, et al. Clinical utility of hepatocellular carcinoma risk scores in chronic hepatitis B [J]. Liver International, 2020, 40(3): 484-495.
[20] FAN Chunsun, LI Mengge, GAN Yu, et al. A simple AGED score for risk classification of primary liver cancer: development and validation with long-term prospective HBsAg-positive cohorts in Qidong, China [J]. Gut : Journal of the British Society of Gastroen- teraogy, 2019, 68(5): 948-949.
[21] KIM H, YU Xian, KRAMER J, et al. Comparative performance of risk prediction models for hepatitis B-related hepatocellular carcinoma in the United States [J]. Journal of Hepatology, 2022, 76(2): 294-301.
[22] FUNG J, LAI C L, SETO W K, et al. Nucleoside/nucleotide analogues in the treatment of chronic hepatitis B [J]. Journal of Antimicrobial Chemotherapy, 2011, 66(12): 2715-2725.
[23] JUNG K S, KIM S U, SONG Kijun, et al. Validation of hepatitis B virus-related hepatocellular carcinoma prediction models in the era of antiviral therapy [J]. Hepatology (Baltimore, Md), 2015, 62(6): 1757-1766.
[24] PAPATHEODORIDIS G, DALEKOS G, SYPSA V, et al. PAGE-B predicts the risk of developing hepatocellular carcinoma in Caucasians with chronic hepatitis B on 5-year antiviral therapy [J]. Journal of Hepatology, 2016, 64(4): 800-806.
[25] KIM M N, HWANG S G, RIM K S, et al. Validation of PAGE-B model in Asian chronic hepatitis B patients receiving entecavir or tenofovir [J]. Liver International, 2017, 37(12): 1788-1795.
[26] CHON H Y, LEE H A, SUH S J, et al. Addition of liver stiffness enhances the predictive accuracy of the PAGE-B model for hepatitis B-related hepatocellular carcinoma [J]. Alimentary Pharmacology and Therapeutics, 2021, 53(8): 919-927.
[27] FRISON P R, DE FRAGA R S. Prediction of hepatocellular carcinoma through the modified page-b score (MPAGE-B) in patients with chronic hepatitis B: it should be used in clinical practice? [J]. Arquivos de Gastroenterologia, 2023, 60(2): 172-177.
[28] PAPATHEODORIDIS G V, SYPSA V, DALEKOS G N, et al. Hepatocellular carcinoma prediction beyond year 5 of oral therapy in a large cohort of Caucasian patients with chronic hepatitis B [J]. Journal of Hepatology, 2020, 72(6): 1088-1096.
[29] CHON H Y, LEE H A, SUH S J, et al. Addition of liver stiffness enhances the predictive accuracy of the PAGE-B model for hepatitis B-related hepatocellular carcinoma [J]. Alimentary Pharmacology and Therapeutics, 2021, 53(8): 919-927.
[30] FAN Ronglian, PAPATHEODORIDIS G, SUN Jian, et al. AMAP risk score predicts hepatocellular carcinoma development in patients with chronic hepatitis [J]. Journal of Hepatology, 2020, 73(6): 1368-1378.
[31] GUI Honglian, HUANG Yan, ZHAO Gangde, et al. External validation of aMAP hepatocellular carcinoma risk score in patients with chronic hepatitis B-related cirrhosis receiving ETV or TDF therapy [J]. Frontiers in Medicine (Lausanne), 2021, 8: 677920.
[32] 全国多中心前瞻性肝癌极早期预警筛查项目(PreCar)专家组, 中国肝癌早筛策略专家共识[J].肝脏,2021, 26(8): 825-831. Prospective SuRveillance for Very Early Hepatocellular cARcinoma (PreCar)Expert Panel. Expert consensus on early screening strategies for liver cancer in China [J]. Liver, 2021, 26(8): 825-831.
[33] KIM H Y, LAMPERTICO P, NAM J Y, et al. An artificial intelligence model to predict hepatocellular carcinoma risk in Korean and Caucasian patients with chronic hepatitis B [J]. Journal of Hepatology, 2022, 76(2): 311-318.
[34] LEE H W, KIM H, PARK T, et al. A machine learning model for predicting hepatocellular carcinoma risk in patients with chronic hepatitis B [J]. Liver International, 2023, 43(8): 1813-1821.
[35] CHRISTODOULOU E, MA Jie, COLLINS G S, et al. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models [J]. Journal of Clinical Epidemiology, 2019, 110: 12-22.
[36] 石玮, 黄春丽, 欧飞凤, 等. 原发性肝癌的中医研究进展及思考 [J]. 内蒙古中医药, 2023, 42(10): 148-150. SHI Wei, HUANG Chunli, OU Feifeng, et al. Progress and reflection on traditional Chinese medicine research in primary liver cancer [J]. Inner Mongolian Journal of Traditional Chinese Medicine, 2023, 42(10): 148-150.
[37] 邵洁莹, 黄慧晶, 江珮瑜, 等. 原发性肝癌中医证型与辅助检查指标相关性的研究进展 [J]. 基层中医药,2023, 2(6): 138-148. SHAO Jieying, HUANG Huijing, JIANG Peiyu, et al. Research progress on correlation between TCM syndrome type and auxiliary examination indexes of primary hepatocellular carcino [J]. Basic Traditional Chinese Medicine, 2023, 2(6): 138-148.
[38] 李妍, 彭心怡, 孔燕妮, 等. 免疫检查点抑制剂疗效预测分析及结合中医证型的Nomogram 图构建 [J].浙江中西医结合杂志, 2021, 31(8): 721-725. LI Yan, PENG Xinyi, KONG Yanni, et al. Predictors of immune checkpoint inhibitors on advanced cancer patients and nomogram construction with predictors plus traditional Chinese medicine characteristics [J]. Zhejiang Journal of Integrated Traditional Chinese and Western Medicine, 2021, 31(8): 721-725.
[39] 王宗玉, 何晞辰, 陈一贞, 等. 乳腺癌术后内分泌治疗后类更年期综合征中医证型列线图预测模型的建立和评估 [J]. 上海中医药杂志, 2023, 57(4): 29-35. WANG Zongyu, HE Xichen, CHEN Yizhen, et al. Establishment and evaluation of a nomogram for predicting traditional Chinese medicine syndromes of menopause-like syndrome after endocrine therapy for postoperative breast cancer [J]. Shanghai Journal of Traditional Chinese Medicine, 2023, 57(4): 29-35.

相似文献/References:

[1]邓旭,王晓亮.肝细胞癌患者血清趋化因子CXCR12和SA的表达及临床意义[J].现代检验医学杂志,2015,30(06):49.[doi:10.3969/j.issn.1671-7414.2015.06.014]
 DENG Xu,WANG Xiao-liang.Expression and Clinical Significance of Serum CXCR12 and SA in Patients with Hepatocarcinoma[J].Journal of Modern Laboratory Medicine,2015,30(01):49.[doi:10.3969/j.issn.1671-7414.2015.06.014]
[2]毛丽萍,何义民,韩 刚,等.血浆Dickkopf同源物1检测对肝细胞癌的诊断价值[J].现代检验医学杂志,2016,31(05):62.[doi:10.3969/j.issn.1671-7414.2016.05.016]
 MAO Li-ping,HE Yi-min,HAN Gang,et al.Diagnosis Value of Detecting Plasma Dickkopf-1 Patients with Hepatocellular Carcinoma[J].Journal of Modern Laboratory Medicine,2016,31(01):62.[doi:10.3969/j.issn.1671-7414.2016.05.016]
[3]阮瑞杨,陈修荣,赵世元.抗EZH2自身抗体IgG在肝癌患者血清中的表达及意义[J].现代检验医学杂志,2017,32(02):72.[doi:10.3969/j.issn.1671-7414.2017.02.019]
 RUAN Rui-yang,CHEN Xiu-rong,ZHAO Shi-yuan.Expression and Significance of Anti EZH2 Autoantibodies IgG in Hepatocellular Carcinoma Patient's Serum Samples[J].Journal of Modern Laboratory Medicine,2017,32(01):72.[doi:10.3969/j.issn.1671-7414.2017.02.019]
[4]卓传尚,柳丽娟,周淑燕.AFP-L3和PIVKA-Ⅱ检测对高危人群良恶性肝病的鉴别诊断价值[J].现代检验医学杂志,2017,32(04):40.[doi:10.3969/j.issn.1671-7414.2017.04.011]
 ZHUO Chuan-shang,LIU Li-juan,ZHOU Shu-yan.Performance of Serum AFP-L3 and PIVKA-Ⅱ in Differential Diagnosis of Benign and Malignant Liver Disease in High Risk Population[J].Journal of Modern Laboratory Medicine,2017,32(01):40.[doi:10.3969/j.issn.1671-7414.2017.04.011]
[5]赵清侠,许丽荣,杨 莹,等.原发性肝癌患者血清VEGF浓度与抑郁症发生的相关性研究[J].现代检验医学杂志,2017,32(06):96.[doi:10.3969/j.issn.1671-7414.2017.06.001]
 ZHAO Qing-xia,XU Li-rong,YANG Ying,et al.Study on the Correlation between Serum VEGF Concentration and Major Depressive Disorder of Patients with Primary Liver Cancer[J].Journal of Modern Laboratory Medicine,2017,32(01):96.[doi:10.3969/j.issn.1671-7414.2017.06.001]
[6]隆绍平,邓世群,赵世元.PTPN12蛋白表达下调与原发性肝细胞癌患者复发和预后关系研究[J].现代检验医学杂志,2018,33(01):86.[doi:10.3969/j.issn.1671-7414.2018.01.001]
 LONG Shao-ping,DENG Shi-qun,ZHAO Shi-yuan.Association between Downregulation of PTPN12 Protein and Recurrence and Prognosis in Patients with Primary Hepatocellular Carcinoma[J].Journal of Modern Laboratory Medicine,2018,33(01):86.[doi:10.3969/j.issn.1671-7414.2018.01.001]
[7]毛丽萍,王跃国,王 健,等.CMIA法测定血清DCP与AFP对肝细胞癌的诊断价值[J].现代检验医学杂志,2018,33(06):38.[doi:10.3969/j.issn.1671-7414.2018.06.010]
 MAO Li-ping,WANG Yue-guo,WANG Jian,et al.Diagnostic Value of the Serum DCP and AFP Determined by CMIA in Hepatocellular Carcinoma[J].Journal of Modern Laboratory Medicine,2018,33(01):38.[doi:10.3969/j.issn.1671-7414.2018.06.010]
[8]吴良银a,李文丽b,刘 俊a.肝细胞癌患者生存预后相关长链非编码RNA(LncRNA)的生物信息学分析[J].现代检验医学杂志,2019,34(04):18.[doi:10.3969/j.issn.1671-7414.2019.04.005]
 WU Liang-yina,LI Wen-lib,LIU Juna.Bioinformatics Analysis of Long-Chain Non-Coding RNA Related to Survival and Prognosis in Patients with Hepatocellular Carcinoma[J].Journal of Modern Laboratory Medicine,2019,34(01):18.[doi:10.3969/j.issn.1671-7414.2019.04.005]
[9]吴良银a,李文丽b,刘 俊b.基于GEO数据的病毒相关性肝癌潜在生物基因标志物的筛选及生物信息学分析[J].现代检验医学杂志,2021,36(06):106.[doi:10.3969/j.issn.1671-7414.2021.06.022]
 WU Liang-yin,LI Wen-li,LIU Jun.Screening and Bioinformatics Analysis of Potential Biomarkers for Virus-associated Hepatocellular Carcinoma Based on GEO Data[J].Journal of Modern Laboratory Medicine,2021,36(01):106.[doi:10.3969/j.issn.1671-7414.2021.06.022]
[10]刘国振,陈秀余,张修欢.血清 miR-122-5p,miR-486-5p,AFP及 AFP-L3水平联合检测对原发性肝癌的诊断价值[J].现代检验医学杂志,2022,37(01):82.[doi:10.3969/j.issn.1671-7414.2022.01.017]
 LIU Guo-zhen,CHEN Xiu-yu,ZHANG Xiu-huan.Value of Combined Detection of Serum miR-122-5p, miR-486-5p, AFP and AFP-L3 Levels in the Diagnosis of Primary LiverCancer[J].Journal of Modern Laboratory Medicine,2022,37(01):82.[doi:10.3969/j.issn.1671-7414.2022.01.017]

备注/Memo

备注/Memo:
基金项目:咸阳市重点研发计划(No:L2022ZDYFSF002)。
作者简介:张乔盟(1996-),男,在读硕士,研究方向:临床检验,E-mail:17602906196@163.com。
通讯作者:马艳侠(1975-),女,主任技师,主要从事生化检验,E-mail:zhmazhch81763@163.com。
周嘉迪(1990-),女,在读博士,研究方向:免疫检验,E-mail:1191861184@qq.com。
更新日期/Last Update: 2025-01-15