[1]王思琦,吴 泽,余 楠.基于CRISPR-Cas12a系统的病原体核酸床旁检测技术方法研究的最新进展[J].现代检验医学杂志,2025,40(01):213-220.[doi:10.3969/j.issn.1671-7414.2025.01.041]
 WANG Siqi,WU Ze,YU Nan.Research Advances in Pathogen Nucleic Acid Point-of-Care Testing Techniques Based on CRISPR-Cas12a System[J].Journal of Modern Laboratory Medicine,2025,40(01):213-220.[doi:10.3969/j.issn.1671-7414.2025.01.041]
点击复制

基于CRISPR-Cas12a系统的病原体核酸床旁检测技术方法研究的最新进展()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第40卷
期数:
2025年01期
页码:
213-220
栏目:
综述
出版日期:
2025-01-15

文章信息/Info

Title:
Research Advances in Pathogen Nucleic Acid Point-of-Care Testing Techniques Based on CRISPR-Cas12a System
文章编号:
1671-7414(2025)01-213-08
作者:
王思琦吴 泽余 楠
(南方医科大学检验与生物技术学院,广州 510515)
Author(s):
WANG SiqiWU ZeYU Nan
(School of Laboratory Medicine and Biotechnology,Southern Medical University, Guangzhou 510515, China)
关键词:
成簇的规则间隔的短回文重复序列相关蛋白系统病原体核酸检测床旁检测
分类号:
R446
DOI:
10.3969/j.issn.1671-7414.2025.01.041
文献标志码:
A
摘要:
病原体核酸检测是精准诊断、治疗和预防感染性疾病的重要环节,即时、简便的床旁检测(POCT)的研制对于实现病原体核酸高效检测意义重大。一种基因编辑工具被发现应用于核酸检测方法高效而实用,此即成簇的规则间隔的短回文重复序列及其相关蛋白(CRISPR-Cas)系统,其中,结构简单的CRISPR-Cas12a 因其强大的靶向结合、反式切割基因片段功能而得以广泛应用。基于CRISPR-Cas12a 系统的病原体核酸检测方法,利用等温或变温核酸扩增技术以及光学信号作为检测介质的POCT 技术,具有高灵敏度、高特异度和检测流程简化等特点。该文主要介绍基于CRISPR-Cas12a 系统的病原核酸检测POCT 技术方法的最新研究进展,为研制快速、准确的病原体核酸检测方法提供新思路。
Abstract:
Pathogen nucleic acid detection is critical to diagnosing, treating and preventing infectious diseases. To efficiently conduct pathogen nucleic acid detection, the development of point-of-care testing(POCT) with immediacy and simplicity is of great significance. A highly effective and practical gene editing tool discovered for nucleic acid detection is the clustered regularly interspaced short palindromic repeats-CRISPR associated proteins (CRISPR-Cas) systems. Among them, CRISPR-Cas12a is widely used due to its simple structure and powerful functions of target binding and collateral cleavage of gene fragments. Based on the CRISPR-Cas12a system, the pathogen nucleic acid detection method utilizes isothermal and temperature-variable nucleic acid amplification techniques and optical signals as the detection medium for POCT. It features high sensitivity, specificity and simplified detection procedures. This article mainly introduces the latest research progress of pathogen nucleic acid detection POCT techniques based on the CRISPR-Cas12a system, providing new ideas for developing rapid and accurate pathogen nucleic acid detection methods.

参考文献/References:

[1] 吴永彬, 李凌. CRISPR/Cas 系统在新型冠状病毒肺炎快速诊断中的应用[J]. 现代检验医学杂志, 2022, 37(3): 1-5. WU Yongbin,LI Ling. Application of CRISPR/Cas systems in the rapid diagnosis of coronavirus disease 2019 [J]. Journal of Modern Laboratory Medicine, 2022, 37(3): 1-5.
[2] KOONIN E V, MAKAROVA K S. Origins and evolution of CRISPR-Cas systems[J]. Philosophical Transactions of the Royal Society B, 2019, 374(1772): 20180087.
[3] LI Shiyuan, CHENG Qiuxiang, LIU Jiakun, et al.Author correction: CRISPR-Cas12a has both cis-and trans-cleavage activities on single-stranded DNA [J].Cell Research, 2018, 28(4): 491-493.
[4] 杜瑶, 高宏丹, 刘家坤, 等. CRISPR-Cas 系统在病原核酸检测中的研究进展[J]. 合成生物学, 2024, 5(1): 202-216 DU Yao, GAO Hongdan, LIU Jiakun, et al. Research progress of the CRISPR-Cas system in the detecting pathogen nucleic acids[J] Synthetic Biology Journal, 2024, 5(1): 202-216
[5] LI Qingnan, WANG Dongxia, CHEN Danye, et al. Photoactivatable CRISPR/Cas12a sensors for biomarkers imaging and point-of-care diagnostics[J].Analytical Chemistry, 2024, 69(6): 2692-2701.
[6] PAUL B, MONTOYA G. CRISPR-Cas12a: functional overview and applications[J]. Biomedical Journal, 2020, 43(1): 8-17.
[7] MAKAROVA K S, WOLF Y I, IRANZO J, et al.Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants[J]. Nature Reviews Microbiology,2020,18(2):67-83.
[8] SWARTS D C, VAN DER OOST J, JINEK M. Structural basis for guide RNA processing and seeddependent DNA targeting by CRISPR-Cas12a [J].Molecular Cell, 2017, 66(2): 221-233.
[9] STELLA S, ALC?N P, MONTOYA G. Class 2 CRISPR-Cas RNA-guided endonucleases: Swiss Army knives of genome editing [J]. Nature Structural & Molecular Biology, 2017, 24(11), 882–892.
[10] DRONINA J , SAMUKAITE-BUBNIENE U,RAMANAVICIUS A. Towards application of CRISPRCas12a in the design of modern viral DNA detection tools (Review) [J]. Journal of Nanobiotechnology, 2022, 20(1): 41.
[11] MAO Zefeng, CHEN Ruipeng, WANG Xiaojuan, et al.CRISPR/Cas12a-based technology: a powerful tool for biosensing in food safety [J]. Trends in Food Science & Technology, 2022, 122: 211-222.
[12] BARRANGOU R, HORVATH P. A decade of discovery: CRISPR functions and applications [J].Nature Microbiology, 2017, 2: 17092.
[13] GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J].Science (New York, N.Y.), 2018, 360(6387): 439-444.
[14] 周旭, 王思文, 王秀荣. CRISPR-Cas12a 在病原快速检测中的应用[J]. 中国兽医科学, 2022, 52(8): 1031-1037. ZHOU Xu, WANG Siwen, WANG Xiurong. Application of CRISPR-Cas12a in rapid detection of pathogens [J].Chinese Veterinary Science, 2022, 52(8), 1031-1037.
[15] CHEN J S, MA Enbo, DOUDNA J A, et al. CRISPRCas12a target binding unleashes indiscriminate singlestranded DNase activity[J]. Science (New York, N.Y.),2018, 360(6387): 436-439.
[16] SWARTS D C, JINEK M. Mechanistic insights into the cis- and trans-acting DNase activities of Cas12a [J].Molecular Cell. 2019; 73(3): 589-600.
[17] HUYKE D A, RAMACHANDRAN A, BASHKIROV V I, et al. Enzyme kinetics and detector sensitivity determine limits of detection of amplification-free CRISPR-Cas12 and CRISPR-Cas13 diagnostics[J].Analytical Chemistry,2022,94(27): 9826-9834.
[18] 张庆勋, 钟震宇, 郭青云, 等. 基于CRISPR-Cas 系统的病原体检测研究进展[J]. 中国畜牧兽医, 2022,49(8): 3190-3199. ZHANG Qingxun, ZHONG Zhenyu, GUO Qingyun,et al. Recent advances of pathogens detection based on CRISPR-Cas system [J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(8): 3190-3199.
[19] 李涛. 病原微生物检测新方法及应用研究[D]. 北京:中国科学院大学( 中国科学院精密测量科学与技术创新研究院),2021. LI Tao. Establishment and implement of novel pathogen detection strategies [D].Beijing:University of Chinese Academy of Sciences(Innovation Academy for Precision Measurement Science and Technology,CAS), 2021.
[20] 王亮, 宋毅, 苗立中, 等. CRISPR-Cas12a 在病原检测中的应用进展[J]. 山东畜牧兽医, 2023, 44(9): 90-94. WANG Liang, SONG Yi, MIAO Lizhong, et al.Application progress of CRISPR-Cas12a in pathogen detection[J]. Shandong Journal of Animal Science and Veterinary Medicine, 2023, 44(9), 90-94.
[21] ZHU Hanliang, ZHANG Haoqing, XU Ying, et al. PCR past,present and future[J]. BioTechniques, 2020, 69(4): 317-325.
[22] 汪博文, 邬幸梓, 张玉林, 等.CRISPR-Cas12a 在疾病诊断和中医药研究中的应用[J]. 湖北中医药大学学报, 2022, 24(6):115-118. WANG Bowen, WU Xingzi, ZHANG Yulin, et al.Application of CRISPR-Cas12a in disease diagnosis and traditional Chinses medicine research [J]. Journal of Hubei University of Chinese Medicine, 2022, 24(6), 115-118.
[23] 蔡文凯, 蔡水淋, 郝宗杰. 几种主流恒温扩增技术及其优化策略进展[J]. 海南医学, 2022, 33(20): 2716-2720. CAI Wenkai, CAI Shuilin, HAO Zongjie. Progress on mainstream constant temperature amplification technologies and its optimized strategy[J]. Hainan Medical Journal, 2022, 33(20): 2716-2720.
[24] WONG Y P, OTHMAN S, LAU Y L, et al. Loopmediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms[J]. Journal of Applied Microbiology, 2018, 124(3): 626-643.
[25] ZHANG Limei, JIANG Hui, ZHU Zixin, et al. Integrating CRISPR/Cas within isothermal amplification for point-of-Care assay of nucleic acid[J].Talanta, 2022, 243: 123388.
[26] YIGCI D, ATCEKEN N, YETISEN A K, et al. Loopmediated isothermal amplification-integrated CRISPR methods for infectious disease diagnosis at point of care[J]. ACS Omega, 2023, 8(46): 43357-43373.
[27] MAHAS A, HASSAN N, AMAN R, et al. LAMP-coupled CRISPR-Cas12a module for rapid and sensitive detection of plant DNA viruses[J]. Viruses, 2021, 13(3): 466.
[28] LEI Lei, LIAO Fan, TAN Lei, et al. LAMP Coupled CRISPRCas12a module for rapid, sensitive and visual detection of porcine circovirus 2[J]. Animals(Basel) , 2022, 12(18): 2413.
[29] YANG Bo, SHI Zhengwang, MA Yuan, et al. LAMP assay coupled with CRISPR/Cas12a system for portable detection of African swine fever virus [J]. Transboundary and Emerging Diseases, 2022, 69(4): e216-e223
[30] YIN Weihong, ZHUANG Jianjian, LI Jiale, et al.Digital recombinase polymerase amplification, digital loop-mediated isothermal amplification, and digital CRISPR-Cas assisted assay: current status, challenges,and perspectives[J]. Small, 2023, 19(49): e2303398.
[31] DING Xiong, YIN Kun, LI Ziyue, et al. Sensitive quantitative detection of SARS-CoV-2 in clinical samples using digital warm-start CRISPR assay[J].Biosensors & Bioelectronics, 2021, 184: 113218.
[32] BROUGHTON J P, DENG Xianding, YU Guixia, et al. CRISPR-Cas12-based detection of SARS-CoV-2[J].Nature Biotechnology, 2020, 38(7): 870-874.
[33] CHEN Yanju, SHI Ya, CHEN Yin, et al. Contaminationfree visual detection of SARS-CoV-2 with CRISPR/Cas12a:a promising method in the point-of-care detection[J].Biosensors & Bioelectronics, 2020, 169: 112642.
[34] WANG Rui, QIAN Chunyan, PANG Yanan, et al.opvCRISPR: one-pot visual RT-LAMP-CRISPR platform for SARS-cov-2 detection[J]. Biosensors & Bioelectronics, 2021, 172: 112766.
[35] FIGUEIREDO D, CASCALHEIRA A, GONCALVES J. Rapid, multiplex detection of SARS-CoV-2 using isothermal amplification coupled with CRISPR-Cas12a[J]. Scientific Reports, 2023, 13(1): 849.
[36] ZHANG Mai, WANG Honghong, WANG Hui, et al. CRISPR/Cas12a-assisted ligation-initiated loopmediated isothermal amplification (CAL-LAMP) for highly specific detection of microRNAs[J]. Analytical Chemistry, 2021, 93(22): 7942-7948.
[37] 许淑莹, 王冬梅, 欧阳松应. 基于RPA 的病原体快速诊断策略[J]. 福建师范大学学报( 自然科学版),2024, 40(1): 34-44. XU Shuying, WANG Dongmei, OUYANG Songying.RPA-based rapid diagnostic strategies for pathogens[J].Journal of Fujian Normal University(Natural Science Edition), 2024, 40(1): 34-44.
[38] TSOU J H, LENG Qixin, JIANG Feng. A CRISPR test for detection of circulating nuclei acids[J]. Translational Oncology. 2019,12(12): 1566-1573.
[39] 李文静, 刘凌云, 解媛, 等. 产单核细胞李斯特菌分子分型技术的最新研究进展[J]. 现代检验医学杂志,2023, 38(6): 200-204. LI Wenjing,LIU Lingyun,XIE Yuan,et al.Advances in molecular typing techniques of Listeria monocytogenes[J]. Journal of Modern Laboratory Medicine, 2023, 38(6): 200-204.
[40] 陈大伟, 李兵兵, 魏明月, 等. 基于RPA/CRISPRCas12a技术的单核细胞增生李斯特菌快速检测方法建立[J]. 肉类研究, 2023, 37(9): 46-51. CHEN Dawei, LI Bingbing, WEI Mingyue, et al.Development of a rapid detection method for Listeria monocytogenes based on recombinase polymerase amplification combined with CRISPR-Cas12a technology [J]. Meat Research, 2023, 37(9): 46-51.
[41] XU Jianhao, MA Jianfeng, LI Yanwei, et al. A general RPA-CRISPR/Cas12a sensing platform for Brucella spp. detection in blood and milk samples[J]. Sensors and Actuators, B:Chemical, 2022, 364:131864.
[42] AI Jingwen, ZHOU Xian, XU Teng, et al. CRISPRbased rapid and ultra-sensitive diagnostic test for Mycobacterium tuberculosis[J]. Emerging Microbes & Infections, 2019, 8(1): 1361-1369.
[43] LI Xin, DANG Zhisheng, TANG Wenqiang, et al. Detection of parasites in the field: the ever-innovating CRISPR/Cas12a[J]. Biosensors(Basel), 2024, 14(3): 145.
[44] LI Shan, WANG Xiaocen, YU Yanhui, et al. Establishment and application of a CRISPR-Cas12a-based RPA-LFS and fluorescence for the detection of Trichomonas vaginalis[J].Parasites & Vectors, 2022, 15(1): 350.
[45] LEI Rong, LI Limei, WU Pinshan, et al. RPA/CRISPR/Cas12a-based on-site and rapid nucleic acid detection of Toxoplasma gondii in the environment[J]. ACS Synthetic Biology, 2022, 11(5): 1772-1781.
[46] 王丽, 李珊, 李璐, 等. 微小隐孢子虫RPA-CRISPR/Cas12a 可视化检测方法的建立及应用[J]. 中国畜牧兽医, 2023, 50(12): 4793-4804. WANG Li, LI Shan, LI Lu, et al. Establishment and application of the RPA-CRISPR/Cas12a visual diagnostic method for Cryptosporidium parvum [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(12): 4793-4804.
[47] GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J].Science (New York, N.Y.), 2017, 356(6336): 438-442.
[48] LEE R A, DE PUIG H D, NGUYEN P Q, et al. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria[J]. Proceedings of the National Academy of Sciences of the U S A, 2020, 117(41): 25722-25731.
[49] CAO Gaihua, YANG Nannan, XIONG Yifan, et al.,Completely free from PAM limitations: asymmetric RPA with CRISPR/Cas12a for nucleic acid assays[J].ACS Sensors, 2023, 8(12): 4655-4663.
[50] GU Lide, YAN Wanli, LIU Le, et al. Research progress on rolling circle amplification (RCA)-based biomedical sensing[J].Pharmaceuticals (Basel), 2018, 11(2): 35.
[51] CHEN Zhibao, MA Li, BU Shengjun, et al. CRISPR/Cas12a and immuno-RCA based electrochemical biosensor for detecting pathogenic bacteria[J]. Journal of Electroanalytical Chemistry, 2021, 901: 115755.
[52] ZHU Zaobing, GUO Yongkun, WANG Chen, et al. An ultra-sensitive one-pot RNA-templated DNA ligation rolling circle amplification-assisted CRISPR/Cas12a detector assay for rapid detection of SARS-CoV-2[J].Biosensors & Bioelectronics, 2023, 228: 115179.
[53] LI Shiyuan, CHENG Qiuxiang, WANG Jin, et al. CRISPR-Cas12a-assisted nucleic acid detection[J]. Cell Discovery, 2018, 4: 20.
[54] MONK C H, YOUNGQUIST B M, BRADY A D, et al.Development of a CRISPR-Cas12a rapid diagnostic for human cytomegalovirus[J]. Antiviral Research, 2023, 215: 105624.
[55] ZHOU Changyu, LI Wenjing, ZHAO Yu, et al. Sensitive detection of viable salmonella bacteria based on tertiary cascade signal amplification via splintR ligase ligation-PCR amplification-CRISPR/Cas12a cleavage[J].Analytica Chimica Acta, 2023, 1248: 340885.
[56] KAMINSKI M M, ABUDAYYEH O O, GOOTENBERG J S, et al. CRISPR-based diagnostics[J]. Nature Biomedical Engineering, 2021, 5(7): 643-656.
[57] 胡飞, 刘艳飞, 李希晨, 等. 基于CRISPR/Cas12a 的核酸便捷化检测方法和现场快速便携式检测装置[J]. 中国激光, 2022, 49(15): 157-166. HU Fei, LIU Yanfei, LI Xichen, et al. Convenient nucleic acid detection method and point-of-care detection device based on CRISPR/Cas12a molecular diagnosis [J].Chinese Journal of Lasers, 2022, 49(15): 157-166.
[58] JOUNG J, LADHA A, SAITO M, et al. Detection of SARSCoV-2 with SHERLOCK one-pot testing[J]. the New England Journal of Medicine, 2020, 383(15): 1492-1494.
[59] HU Menglu, QIU Zhiqiang, BI Zirong, et al.Photocontrolled crRNA activation enables robust CRISPR-Cas12a diagnostics [J]. Proceedings of the National Academy of Sciences of the U S A , 2022,119(26): e2202034119.
[60] CHEN Yong, XU Xiaoling, WANG Jiachun, et al.Photoactivatable CRISPR/Cas12a strategy for onepot DETECTR molecular diagnosis[J]. Analytical Chemistry, 2022, 94(27): 9724-9731.
[61] HU Menglu, LIU Ruhan, QIU Zhiqiang, et al. Lightstart CRISPR-Cas12a reaction with caged crRNA enables rapid and sensitive nucleic acid detection [J].Angewandte Chemie,2023, 62(23): e202300663.
[62] WU Qian, JIANG Song, HUANG Yong, et al. A one-pot method based on rolling circle amplification and lightactivated CRISPR/Cas12a reaction for simple and highly sensitive detection of Staphylococcus aureus[J]. Chemical Engineering Journal, 2023, 477: 146814.
[63] 付强强,吴泽,郑磊. 智能手机医学检验新技术的进展、问题和发展方向[J]. 华西医学, 2021, 36(8): 1007-1010. FU Qiangqiang, WU Ze, ZHENG Lei. Progress, problems and development direction of the new technology of smartphonebased medical examination [J]. West China Medical Journal, 2021, 36(8):1007-1010.
[64] HUANG Zhen, NING Bo, YANG H S, et al. Sensitive tracking of circulating viral RNA through all stages of SARS-CoV-2 infection [J]. the Journal of Clinical Investigation, 2021, 131(7): e146031.
[65] HUANG Zhen, LACOURSE S M, KAY A W, et al. CRISPR detection of circulating cell-free Mycobacterium tuberculosis DNA in adults and children, including children with HIV: a molecular diagnostics study[J]. the Lancet. Microbe, 2022, 3(7): e482-e492.
[66] HE Qian, YU Dongmei, BAO Mengdi, et al. Highthroughput and all-solution phase African Swine Fever Virus (ASFV) detection using CRISPR-Cas12a and fluorescence based point-of-care system[J]. Biosensors & Bioelectronics, 2020, 154: 112068.
[67] CAI Yiyuan, ZHUANG Liang, YU Jibin, et al. A dualchamber “one-pot” CRISPR/Cas12a-based portable and self-testing system for rapid HPV diagnostics[J]. Sensors and Actuators B: Chemical,2024, 405: 135295.
[68] MA Long, YIN Lijuan, LI Xiaoyuan, et al. A smartphone-based visual biosensor for CRISPR-Cas powered SARS-CoV-2 diagnostics[J]. Biosensors & Bioelectronics, 2022, 195: 113646.
[69] VAN DONGEN J E, BERENDSEN J T W, STEENBERGEN R D M,et al. Point-of-care CRISPR/Cas nucleic acid detection: recent advances, challenges and opportunities [J]. Biosensors & Bioelectronics, 2020, 166: 112445.
[70] MUKAMA O , YUAN Ting , HE Zhixu ,et al. A high fidelity CRISPR/Cas12a based lateral flow biosensor for the detection of HPV16 and HPV18[J]. [J]. Sensors and Actuators B Chemical,2020,316(Suppl 10):128119.
[71] XIONG Yifan, CAO Gaihua, CHEN Xiaolong, et al. One-pot platform for rapid detecting virus utilizing recombinase polymerase amplification and CRISPR/Cas12a[J]. Applied Microbiology and Biotechnology, 2022, 106(12): 4607-4616.
[72] BHATT A, FATIMA Z, RUWALI M, et al. CLEVER assay: a visual and rapid RNA extraction-free detection of SARS-CoV-2 based on CRISPR-Cas integrated RT-LAMP technology[J]. Journal of Applied Microbiology. 2022; 133(2): 410-421.
[73] DENG Fei, LI Yi, YANG Biyao, et al. Topological barrier to Cas12a activation by circular DNA nanostructures facilitates autocatalysis and transforms DNA/RNA sensing[J]. Nature Communications, 2024, 15(1): 1818.

备注/Memo

备注/Memo:
基金项目 :中国博士后科学基金(2021M701628)。
作者简介 :王思琦(2003-),女,在读本科生,专业:医学检验技术,E-mail:1715166206@qq.com。
通讯作者 :余 楠(1972-),女,主任技师,硕士生导师,主要从事病原微生物检测技术研究,E-mail:yunanzhujiang@163.com。
更新日期/Last Update: 2025-01-15