参考文献/References:
[1] 吴永彬, 李凌. CRISPR/Cas 系统在新型冠状病毒肺炎快速诊断中的应用[J]. 现代检验医学杂志, 2022, 37(3): 1-5. WU Yongbin,LI Ling. Application of CRISPR/Cas systems in the rapid diagnosis of coronavirus disease 2019 [J]. Journal of Modern Laboratory Medicine, 2022, 37(3): 1-5.
[2] KOONIN E V, MAKAROVA K S. Origins and evolution of CRISPR-Cas systems[J]. Philosophical Transactions of the Royal Society B, 2019, 374(1772): 20180087.
[3] LI Shiyuan, CHENG Qiuxiang, LIU Jiakun, et al.Author correction: CRISPR-Cas12a has both cis-and trans-cleavage activities on single-stranded DNA [J].Cell Research, 2018, 28(4): 491-493.
[4] 杜瑶, 高宏丹, 刘家坤, 等. CRISPR-Cas 系统在病原核酸检测中的研究进展[J]. 合成生物学, 2024, 5(1): 202-216 DU Yao, GAO Hongdan, LIU Jiakun, et al. Research progress of the CRISPR-Cas system in the detecting pathogen nucleic acids[J] Synthetic Biology Journal, 2024, 5(1): 202-216
[5] LI Qingnan, WANG Dongxia, CHEN Danye, et al. Photoactivatable CRISPR/Cas12a sensors for biomarkers imaging and point-of-care diagnostics[J].Analytical Chemistry, 2024, 69(6): 2692-2701.
[6] PAUL B, MONTOYA G. CRISPR-Cas12a: functional overview and applications[J]. Biomedical Journal, 2020, 43(1): 8-17.
[7] MAKAROVA K S, WOLF Y I, IRANZO J, et al.Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants[J]. Nature Reviews Microbiology,2020,18(2):67-83.
[8] SWARTS D C, VAN DER OOST J, JINEK M. Structural basis for guide RNA processing and seeddependent DNA targeting by CRISPR-Cas12a [J].Molecular Cell, 2017, 66(2): 221-233.
[9] STELLA S, ALC?N P, MONTOYA G. Class 2 CRISPR-Cas RNA-guided endonucleases: Swiss Army knives of genome editing [J]. Nature Structural & Molecular Biology, 2017, 24(11), 882–892.
[10] DRONINA J , SAMUKAITE-BUBNIENE U,RAMANAVICIUS A. Towards application of CRISPRCas12a in the design of modern viral DNA detection tools (Review) [J]. Journal of Nanobiotechnology, 2022, 20(1): 41.
[11] MAO Zefeng, CHEN Ruipeng, WANG Xiaojuan, et al.CRISPR/Cas12a-based technology: a powerful tool for biosensing in food safety [J]. Trends in Food Science & Technology, 2022, 122: 211-222.
[12] BARRANGOU R, HORVATH P. A decade of discovery: CRISPR functions and applications [J].Nature Microbiology, 2017, 2: 17092.
[13] GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J].Science (New York, N.Y.), 2018, 360(6387): 439-444.
[14] 周旭, 王思文, 王秀荣. CRISPR-Cas12a 在病原快速检测中的应用[J]. 中国兽医科学, 2022, 52(8): 1031-1037. ZHOU Xu, WANG Siwen, WANG Xiurong. Application of CRISPR-Cas12a in rapid detection of pathogens [J].Chinese Veterinary Science, 2022, 52(8), 1031-1037.
[15] CHEN J S, MA Enbo, DOUDNA J A, et al. CRISPRCas12a target binding unleashes indiscriminate singlestranded DNase activity[J]. Science (New York, N.Y.),2018, 360(6387): 436-439.
[16] SWARTS D C, JINEK M. Mechanistic insights into the cis- and trans-acting DNase activities of Cas12a [J].Molecular Cell. 2019; 73(3): 589-600.
[17] HUYKE D A, RAMACHANDRAN A, BASHKIROV V I, et al. Enzyme kinetics and detector sensitivity determine limits of detection of amplification-free CRISPR-Cas12 and CRISPR-Cas13 diagnostics[J].Analytical Chemistry,2022,94(27): 9826-9834.
[18] 张庆勋, 钟震宇, 郭青云, 等. 基于CRISPR-Cas 系统的病原体检测研究进展[J]. 中国畜牧兽医, 2022,49(8): 3190-3199. ZHANG Qingxun, ZHONG Zhenyu, GUO Qingyun,et al. Recent advances of pathogens detection based on CRISPR-Cas system [J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(8): 3190-3199.
[19] 李涛. 病原微生物检测新方法及应用研究[D]. 北京:中国科学院大学( 中国科学院精密测量科学与技术创新研究院),2021. LI Tao. Establishment and implement of novel pathogen detection strategies [D].Beijing:University of Chinese Academy of Sciences(Innovation Academy for Precision Measurement Science and Technology,CAS), 2021.
[20] 王亮, 宋毅, 苗立中, 等. CRISPR-Cas12a 在病原检测中的应用进展[J]. 山东畜牧兽医, 2023, 44(9): 90-94. WANG Liang, SONG Yi, MIAO Lizhong, et al.Application progress of CRISPR-Cas12a in pathogen detection[J]. Shandong Journal of Animal Science and Veterinary Medicine, 2023, 44(9), 90-94.
[21] ZHU Hanliang, ZHANG Haoqing, XU Ying, et al. PCR past,present and future[J]. BioTechniques, 2020, 69(4): 317-325.
[22] 汪博文, 邬幸梓, 张玉林, 等.CRISPR-Cas12a 在疾病诊断和中医药研究中的应用[J]. 湖北中医药大学学报, 2022, 24(6):115-118. WANG Bowen, WU Xingzi, ZHANG Yulin, et al.Application of CRISPR-Cas12a in disease diagnosis and traditional Chinses medicine research [J]. Journal of Hubei University of Chinese Medicine, 2022, 24(6), 115-118.
[23] 蔡文凯, 蔡水淋, 郝宗杰. 几种主流恒温扩增技术及其优化策略进展[J]. 海南医学, 2022, 33(20): 2716-2720. CAI Wenkai, CAI Shuilin, HAO Zongjie. Progress on mainstream constant temperature amplification technologies and its optimized strategy[J]. Hainan Medical Journal, 2022, 33(20): 2716-2720.
[24] WONG Y P, OTHMAN S, LAU Y L, et al. Loopmediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms[J]. Journal of Applied Microbiology, 2018, 124(3): 626-643.
[25] ZHANG Limei, JIANG Hui, ZHU Zixin, et al. Integrating CRISPR/Cas within isothermal amplification for point-of-Care assay of nucleic acid[J].Talanta, 2022, 243: 123388.
[26] YIGCI D, ATCEKEN N, YETISEN A K, et al. Loopmediated isothermal amplification-integrated CRISPR methods for infectious disease diagnosis at point of care[J]. ACS Omega, 2023, 8(46): 43357-43373.
[27] MAHAS A, HASSAN N, AMAN R, et al. LAMP-coupled CRISPR-Cas12a module for rapid and sensitive detection of plant DNA viruses[J]. Viruses, 2021, 13(3): 466.
[28] LEI Lei, LIAO Fan, TAN Lei, et al. LAMP Coupled CRISPRCas12a module for rapid, sensitive and visual detection of porcine circovirus 2[J]. Animals(Basel) , 2022, 12(18): 2413.
[29] YANG Bo, SHI Zhengwang, MA Yuan, et al. LAMP assay coupled with CRISPR/Cas12a system for portable detection of African swine fever virus [J]. Transboundary and Emerging Diseases, 2022, 69(4): e216-e223
[30] YIN Weihong, ZHUANG Jianjian, LI Jiale, et al.Digital recombinase polymerase amplification, digital loop-mediated isothermal amplification, and digital CRISPR-Cas assisted assay: current status, challenges,and perspectives[J]. Small, 2023, 19(49): e2303398.
[31] DING Xiong, YIN Kun, LI Ziyue, et al. Sensitive quantitative detection of SARS-CoV-2 in clinical samples using digital warm-start CRISPR assay[J].Biosensors & Bioelectronics, 2021, 184: 113218.
[32] BROUGHTON J P, DENG Xianding, YU Guixia, et al. CRISPR-Cas12-based detection of SARS-CoV-2[J].Nature Biotechnology, 2020, 38(7): 870-874.
[33] CHEN Yanju, SHI Ya, CHEN Yin, et al. Contaminationfree visual detection of SARS-CoV-2 with CRISPR/Cas12a:a promising method in the point-of-care detection[J].Biosensors & Bioelectronics, 2020, 169: 112642.
[34] WANG Rui, QIAN Chunyan, PANG Yanan, et al.opvCRISPR: one-pot visual RT-LAMP-CRISPR platform for SARS-cov-2 detection[J]. Biosensors & Bioelectronics, 2021, 172: 112766.
[35] FIGUEIREDO D, CASCALHEIRA A, GONCALVES J. Rapid, multiplex detection of SARS-CoV-2 using isothermal amplification coupled with CRISPR-Cas12a[J]. Scientific Reports, 2023, 13(1): 849.
[36] ZHANG Mai, WANG Honghong, WANG Hui, et al. CRISPR/Cas12a-assisted ligation-initiated loopmediated isothermal amplification (CAL-LAMP) for highly specific detection of microRNAs[J]. Analytical Chemistry, 2021, 93(22): 7942-7948.
[37] 许淑莹, 王冬梅, 欧阳松应. 基于RPA 的病原体快速诊断策略[J]. 福建师范大学学报( 自然科学版),2024, 40(1): 34-44. XU Shuying, WANG Dongmei, OUYANG Songying.RPA-based rapid diagnostic strategies for pathogens[J].Journal of Fujian Normal University(Natural Science Edition), 2024, 40(1): 34-44.
[38] TSOU J H, LENG Qixin, JIANG Feng. A CRISPR test for detection of circulating nuclei acids[J]. Translational Oncology. 2019,12(12): 1566-1573.
[39] 李文静, 刘凌云, 解媛, 等. 产单核细胞李斯特菌分子分型技术的最新研究进展[J]. 现代检验医学杂志,2023, 38(6): 200-204. LI Wenjing,LIU Lingyun,XIE Yuan,et al.Advances in molecular typing techniques of Listeria monocytogenes[J]. Journal of Modern Laboratory Medicine, 2023, 38(6): 200-204.
[40] 陈大伟, 李兵兵, 魏明月, 等. 基于RPA/CRISPRCas12a技术的单核细胞增生李斯特菌快速检测方法建立[J]. 肉类研究, 2023, 37(9): 46-51. CHEN Dawei, LI Bingbing, WEI Mingyue, et al.Development of a rapid detection method for Listeria monocytogenes based on recombinase polymerase amplification combined with CRISPR-Cas12a technology [J]. Meat Research, 2023, 37(9): 46-51.
[41] XU Jianhao, MA Jianfeng, LI Yanwei, et al. A general RPA-CRISPR/Cas12a sensing platform for Brucella spp. detection in blood and milk samples[J]. Sensors and Actuators, B:Chemical, 2022, 364:131864.
[42] AI Jingwen, ZHOU Xian, XU Teng, et al. CRISPRbased rapid and ultra-sensitive diagnostic test for Mycobacterium tuberculosis[J]. Emerging Microbes & Infections, 2019, 8(1): 1361-1369.
[43] LI Xin, DANG Zhisheng, TANG Wenqiang, et al. Detection of parasites in the field: the ever-innovating CRISPR/Cas12a[J]. Biosensors(Basel), 2024, 14(3): 145.
[44] LI Shan, WANG Xiaocen, YU Yanhui, et al. Establishment and application of a CRISPR-Cas12a-based RPA-LFS and fluorescence for the detection of Trichomonas vaginalis[J].Parasites & Vectors, 2022, 15(1): 350.
[45] LEI Rong, LI Limei, WU Pinshan, et al. RPA/CRISPR/Cas12a-based on-site and rapid nucleic acid detection of Toxoplasma gondii in the environment[J]. ACS Synthetic Biology, 2022, 11(5): 1772-1781.
[46] 王丽, 李珊, 李璐, 等. 微小隐孢子虫RPA-CRISPR/Cas12a 可视化检测方法的建立及应用[J]. 中国畜牧兽医, 2023, 50(12): 4793-4804. WANG Li, LI Shan, LI Lu, et al. Establishment and application of the RPA-CRISPR/Cas12a visual diagnostic method for Cryptosporidium parvum [J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(12): 4793-4804.
[47] GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J].Science (New York, N.Y.), 2017, 356(6336): 438-442.
[48] LEE R A, DE PUIG H D, NGUYEN P Q, et al. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria[J]. Proceedings of the National Academy of Sciences of the U S A, 2020, 117(41): 25722-25731.
[49] CAO Gaihua, YANG Nannan, XIONG Yifan, et al.,Completely free from PAM limitations: asymmetric RPA with CRISPR/Cas12a for nucleic acid assays[J].ACS Sensors, 2023, 8(12): 4655-4663.
[50] GU Lide, YAN Wanli, LIU Le, et al. Research progress on rolling circle amplification (RCA)-based biomedical sensing[J].Pharmaceuticals (Basel), 2018, 11(2): 35.
[51] CHEN Zhibao, MA Li, BU Shengjun, et al. CRISPR/Cas12a and immuno-RCA based electrochemical biosensor for detecting pathogenic bacteria[J]. Journal of Electroanalytical Chemistry, 2021, 901: 115755.
[52] ZHU Zaobing, GUO Yongkun, WANG Chen, et al. An ultra-sensitive one-pot RNA-templated DNA ligation rolling circle amplification-assisted CRISPR/Cas12a detector assay for rapid detection of SARS-CoV-2[J].Biosensors & Bioelectronics, 2023, 228: 115179.
[53] LI Shiyuan, CHENG Qiuxiang, WANG Jin, et al. CRISPR-Cas12a-assisted nucleic acid detection[J]. Cell Discovery, 2018, 4: 20.
[54] MONK C H, YOUNGQUIST B M, BRADY A D, et al.Development of a CRISPR-Cas12a rapid diagnostic for human cytomegalovirus[J]. Antiviral Research, 2023, 215: 105624.
[55] ZHOU Changyu, LI Wenjing, ZHAO Yu, et al. Sensitive detection of viable salmonella bacteria based on tertiary cascade signal amplification via splintR ligase ligation-PCR amplification-CRISPR/Cas12a cleavage[J].Analytica Chimica Acta, 2023, 1248: 340885.
[56] KAMINSKI M M, ABUDAYYEH O O, GOOTENBERG J S, et al. CRISPR-based diagnostics[J]. Nature Biomedical Engineering, 2021, 5(7): 643-656.
[57] 胡飞, 刘艳飞, 李希晨, 等. 基于CRISPR/Cas12a 的核酸便捷化检测方法和现场快速便携式检测装置[J]. 中国激光, 2022, 49(15): 157-166. HU Fei, LIU Yanfei, LI Xichen, et al. Convenient nucleic acid detection method and point-of-care detection device based on CRISPR/Cas12a molecular diagnosis [J].Chinese Journal of Lasers, 2022, 49(15): 157-166.
[58] JOUNG J, LADHA A, SAITO M, et al. Detection of SARSCoV-2 with SHERLOCK one-pot testing[J]. the New England Journal of Medicine, 2020, 383(15): 1492-1494.
[59] HU Menglu, QIU Zhiqiang, BI Zirong, et al.Photocontrolled crRNA activation enables robust CRISPR-Cas12a diagnostics [J]. Proceedings of the National Academy of Sciences of the U S A , 2022,119(26): e2202034119.
[60] CHEN Yong, XU Xiaoling, WANG Jiachun, et al.Photoactivatable CRISPR/Cas12a strategy for onepot DETECTR molecular diagnosis[J]. Analytical Chemistry, 2022, 94(27): 9724-9731.
[61] HU Menglu, LIU Ruhan, QIU Zhiqiang, et al. Lightstart CRISPR-Cas12a reaction with caged crRNA enables rapid and sensitive nucleic acid detection [J].Angewandte Chemie,2023, 62(23): e202300663.
[62] WU Qian, JIANG Song, HUANG Yong, et al. A one-pot method based on rolling circle amplification and lightactivated CRISPR/Cas12a reaction for simple and highly sensitive detection of Staphylococcus aureus[J]. Chemical Engineering Journal, 2023, 477: 146814.
[63] 付强强,吴泽,郑磊. 智能手机医学检验新技术的进展、问题和发展方向[J]. 华西医学, 2021, 36(8): 1007-1010. FU Qiangqiang, WU Ze, ZHENG Lei. Progress, problems and development direction of the new technology of smartphonebased medical examination [J]. West China Medical Journal, 2021, 36(8):1007-1010.
[64] HUANG Zhen, NING Bo, YANG H S, et al. Sensitive tracking of circulating viral RNA through all stages of SARS-CoV-2 infection [J]. the Journal of Clinical Investigation, 2021, 131(7): e146031.
[65] HUANG Zhen, LACOURSE S M, KAY A W, et al. CRISPR detection of circulating cell-free Mycobacterium tuberculosis DNA in adults and children, including children with HIV: a molecular diagnostics study[J]. the Lancet. Microbe, 2022, 3(7): e482-e492.
[66] HE Qian, YU Dongmei, BAO Mengdi, et al. Highthroughput and all-solution phase African Swine Fever Virus (ASFV) detection using CRISPR-Cas12a and fluorescence based point-of-care system[J]. Biosensors & Bioelectronics, 2020, 154: 112068.
[67] CAI Yiyuan, ZHUANG Liang, YU Jibin, et al. A dualchamber “one-pot” CRISPR/Cas12a-based portable and self-testing system for rapid HPV diagnostics[J]. Sensors and Actuators B: Chemical,2024, 405: 135295.
[68] MA Long, YIN Lijuan, LI Xiaoyuan, et al. A smartphone-based visual biosensor for CRISPR-Cas powered SARS-CoV-2 diagnostics[J]. Biosensors & Bioelectronics, 2022, 195: 113646.
[69] VAN DONGEN J E, BERENDSEN J T W, STEENBERGEN R D M,et al. Point-of-care CRISPR/Cas nucleic acid detection: recent advances, challenges and opportunities [J]. Biosensors & Bioelectronics, 2020, 166: 112445.
[70] MUKAMA O , YUAN Ting , HE Zhixu ,et al. A high fidelity CRISPR/Cas12a based lateral flow biosensor for the detection of HPV16 and HPV18[J]. [J]. Sensors and Actuators B Chemical,2020,316(Suppl 10):128119.
[71] XIONG Yifan, CAO Gaihua, CHEN Xiaolong, et al. One-pot platform for rapid detecting virus utilizing recombinase polymerase amplification and CRISPR/Cas12a[J]. Applied Microbiology and Biotechnology, 2022, 106(12): 4607-4616.
[72] BHATT A, FATIMA Z, RUWALI M, et al. CLEVER assay: a visual and rapid RNA extraction-free detection of SARS-CoV-2 based on CRISPR-Cas integrated RT-LAMP technology[J]. Journal of Applied Microbiology. 2022; 133(2): 410-421.
[73] DENG Fei, LI Yi, YANG Biyao, et al. Topological barrier to Cas12a activation by circular DNA nanostructures facilitates autocatalysis and transforms DNA/RNA sensing[J]. Nature Communications, 2024, 15(1): 1818.