[1]侯芳霞,刘 琳,张 维,等.基于GEO 数据库筛选稳定性心绞痛患者外周血关键差异基因及诊断模型构建[J].现代检验医学杂志,2022,37(06):19-23+69.[doi:10.3969/j.issn.1671-7414.2022.06.004]
 HOU Fang-xia,LIU Lin,ZHANG Wei,et al.Identification of Hub Genes and Differential Expression Genes for Peripheral Blood Samples of Stable Angina Pectoris Based on GEO Databases[J].Journal of Modern Laboratory Medicine,2022,37(06):19-23+69.[doi:10.3969/j.issn.1671-7414.2022.06.004]
点击复制

基于GEO 数据库筛选稳定性心绞痛患者外周血关键差异基因及诊断模型构建()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第37卷
期数:
2022年06期
页码:
19-23+69
栏目:
论著
出版日期:
2022-11-15

文章信息/Info

Title:
Identification of Hub Genes and Differential Expression Genes for Peripheral Blood Samples of Stable Angina Pectoris Based on GEO Databases
文章编号:
1671-7414(2022)06-019-06
作者:
侯芳霞刘 琳张 维方 凤齐 婷马美娟刘富强 唐治国
(陕西省人民医院心血管内一科,西安 710068)
Author(s):
HOU Fang-xia LIU Lin ZHANG Wei FANG Feng QI Ting MA Mei-juan LIU Fu-qiang TANG Zhi-guo
(Department of Cardiology, Shaanxi Provincial People’s Hospital,Xi’an 710068,China)
关键词:
稳定性心绞痛生物信息学基因表达综合数据库差异表达基因富集分析
分类号:
R541.4;Q343.1
DOI:
10.3969/j.issn.1671-7414.2022.06.004
文献标志码:
A
摘要:
目的 通过生物信息学方法对稳定性心绞痛患者外周血基因表达谱芯片进行分析,获取其外周血表达谱特征并筛选关键差异表达基因作为潜在的分子标记物并构建Nomogram 诊断模型。方法 从NCBI 中的基因表达综合(GeneExpression Omnibus,GEO)数据库中下载稳定性心绞痛患者和对照组的外周血基因表达谱芯片数据集GSE98583,使用R 软件limma 包筛选出具有显著意义的差异基因(differential expression genes,DEGs);利用clusterProfiler 包进行基因本体(gene ontology,GO) 与KEGG(kyoto encyclopedia of genes and genomes) 通路富集分析;使用STRING 在线分析工具构建蛋白交互网络和Cytoscape 软件Cytohubba 和Mcode 插件筛选出关键基因;以关键基因为变量构建稳定性心绞痛Nomogram 分子诊断预测模型。结果 通过比较稳定性心绞痛患者和正常受试者外周血基因表达谱,共筛选出303 个差异表达基因,其中上调基因160 条,下调基因43 条;GO 和KEGG 分析表明,这些差异表达基因主要参与神经递质配体受体相互作用、脂肪吸收消化、钙调节信号通路、PI3K-Akt 通路、NF-kappaB 通路及氧化磷酸化等有关,使用Cytohubba 进一步分析,筛选出10 个关键基因BDNF, GFAP, SYN1, NES, PLG, HPGDS, KCNC1, APOA4, AMBP 和TJP1,并建立了Nomogram 诊断模型。结论 使用生物信息学方法揭示稳定性心绞痛外周血差异基因潜在特征,为稳定性心绞痛的早期诊断提供新的思路。
Abstract:
Objective To analyze the peripheral blood gene expression profile of patients with stable angina pectoris using bioinformatics methods, obtain the characteristics of the peripheral blood gene expression profile, and screen hub genes as potential molecular markers and construct nomogram model. Methods The GSE98583 dataset was downloaded from the GEO database in NCBI, which contain the peripheral blood gene expression profile of stable angina patients and the control group. Differential expression genes (DEGs) were screen using the R software limma package. Further Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using the clusterprofiler package. The STRING database and Cytohubba plug-in of Cytoscape software were used to establish and visualize the protein-protein interaction (PPI) network and identify the hub genes. Results A total of 303 differentially expressed genes were screened between stable angina pectoris and normal subjects, including 160 up-regulated genes and 43 down-regulated genes. GO and KEGG pathway enrichment analyses found that these genes mainly take part in the process of neuroactive ligand-receptor interaction, fat digestion and absorption, calcium signaling pathway, PI3K-Akt signaling pathway, NF-kappa B signaling pathway, oxidative phosphorylation and so on. Ten key genes were identified by Cytohubba plug-in, including BDNF, GFAP, SYN1, NES, PLG, HPGDS, KCNC1, APOA4, AMBP, TJP1 and nomogram model was constructed based on these hub genes. Conclusion The bioinformatics method was used to reveal the potential characteristics of differential genes in peripheral blood of stable angina pectoris, providing a new idea for the early dragnosis of stable angina pectoris.

参考文献/References:

[1] 中国心血管健康与疾病报告编写组 .中国心血管健康与疾病报告 2019 概要 [J].中国循环杂志 , 2020, 35(9): 833-854. The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases in China 2019: an updated summary [J]. Chinese Circulation Journal, 2020, 35(9): 833-854.
[2] KNUUTI J, WIJNS W, SARASTE A, et al. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes:the task force for the diagnosis and management of chronic coronary syndromes of the European society of cardiology(ESC)[J]. European Heart Journal, 2020, 41(3): 407-477.
[3] 闫小妮 , 田国祥 , 郭晓娟 , 等 .GEO数据库架构、申请及数据提取方法与流程 [J].中国循证心血管医学杂志 , 2019, 11(2): 134-137. YAN Xiaoni, TIAN Guoxiang, GUO Xiaojuan, et al. GEO database architecture, application and data extraction methods and processes [J]. Chinese Journal of Evidence-Based Cardiovascular Medicine, 2019, 11(2): 134-137.
[4] 陈龙梅 , 杨振华.基于 GEO数据库对类风湿性关节炎相关基因筛选及生物信息学分析 [J].现代检验医学杂志 , 2021, 36(2):49-52, 78. CHEN Longmei, YANG Zhenhua. Gene screening and bioinformatics analysis of rheumatoid arthritis based on GEO database [J]. Journal of Modern Laboratory Medicine,2021,36(2):49-52, 78.
[5] 吴良银 , 李文丽 , 刘俊.基于 GEO数据的病毒相关性肝癌潜在生物基因标志物的筛选及生物信息学分析 [J].现代检验医学杂志 , 2021, 36(6):106-110. WU Liangyin, LI Wenli, LIU Jun. Screening and bioinformatics analysis of potential biomarkers for virus-associated hepatocellular carcinoma based on GEO data [J]. Journal of Modern Laboratory Medicine, 2021, 36(6):106-110.
[6] ZIEROLD S, BUSCHMANN K, GACHKAR S, et al. Brain-derived neurotrophic factor expression and signaling in different perivascular adipose tissue depots of patients with coronary artery disease[J]. Journal of the American Heart Association, 2021, 10(6): e018322.
[7] MONISHA K G, PRABU P, CHOKKALINGAM M, et al. Clinical utility of brain-derived neurotrophic factor as a biomarker with left ventricular echocardiographic indices for potential diagnosis of coronary artery disease[J]. Scientific Reports, 2020, 10(1): 16359.
[8] JIN Hong, CHEN Yifei, WANG Bilei, et al. Association between brain-derived neurotrophic factor and von Willebrand factor levels in patients with stable coronary artery disease[J]. BMC Cardiovascular Disorders, 2018, 18(1): 23.
[9] ESMAEILI F, MANSOURI E, EMAMI M A, et al. Association of serum level and DNA methylation status of brain-derived neurotrophic factor with the severity of coronary artery disease[J]. Indian Journal of Clinical Biochemistry, 2022, 37(2): 159-168.
[10] ASLAN G, POLAT V, BOZCALI E, et al. Evaluation of serum platelet-derived growth factor receptor-? and brain-derived neurotrophic factor levels in microvascular angina[J]. Anatolian Journal of Cardiology, 2020, 24(6): 397-404.
[11] JIN Hong, JI Jingjing, ZHU Yi, et al. Brain-derived neurotrophic factor, a new predictor of coronary artery calcification[J]. Clinical and Applied Thrombosis/ Hemostasis, 2021, 27: 1076029621989813.
[12] KAESS B M, PREIS S R, LIEB W, et al. Circulating brain-derived neurotrophic factor concentrations and the risk of cardiovascular disease in the community[J]. Journal of the American Heart Association, 2015, 4 (3): e001544.
[13] KONG Deping, YU Ying. Prostaglandin D(2) signaling and cardiovascular homeostasis[J]. Journal of Molecular and Cellular Cardiology, 2022, 167: 97-105.
[14] PAWELZIK S C, AVIGNON A, IDBORG H, et al. Urinary prostaglandin D(2) and E(2) metabolites associate with abdominal obesity, glucose metabolism, and triglycerides in obese subjects[J]. Prostaglandins & Other Lipid Mediators, 2019, 145: 106361.
[15] LEE H S, YUN S J, HA J M, et al. Prostaglandin D(2) stimulates phenotypic changes in vascular smooth muscle cells[J]. Experimental & Molecular Medicine, 2019, 51(11): 1-10.

相似文献/References:

[1]陈龙梅,杨振华.基于GEO数据库对类风湿性关节炎相关基因筛选及生物信息学分析[J].现代检验医学杂志,2021,36(02):49.[doi:doi:10.3969/j.issn.1671-7414.2021.02.012]
 CHEN Long-mei,YANG Zhen-hua.Gene Screening and Bioinformatics Analysis of Rheumatoid Arthritis Based on GEO Database[J].Journal of Modern Laboratory Medicine,2021,36(06):49.[doi:doi:10.3969/j.issn.1671-7414.2021.02.012]
[2]吴良银a,李文丽b,刘 俊b.基于GEO数据的病毒相关性肝癌潜在生物基因标志物的筛选及生物信息学分析[J].现代检验医学杂志,2021,36(06):106.[doi:10.3969/j.issn.1671-7414.2021.06.022]
 WU Liang-yin,LI Wen-li,LIU Jun.Screening and Bioinformatics Analysis of Potential Biomarkers for Virus-associated Hepatocellular Carcinoma Based on GEO Data[J].Journal of Modern Laboratory Medicine,2021,36(06):106.[doi:10.3969/j.issn.1671-7414.2021.06.022]
[3]张涛元,丁雪梅,李 俏,等.人非小细胞肺癌组织中转录因子E2F 家族表达与临床病理特征及预后的相关性分析[J].现代检验医学杂志,2022,37(04):87.[doi:10.3969/j.issn.1671-7414.2022.04.017]
 ZHANG Tao-yuan,DING Xue-mei,LI Qiao,et al.Correlation Analysis of Transcription Factor E2F Family Expression with Clinicopathological Features and Prognosis in Human Non-small Cell Lung Cancer[J].Journal of Modern Laboratory Medicine,2022,37(06):87.[doi:10.3969/j.issn.1671-7414.2022.04.017]
[4]毛 俊,沈秀芬,马 润,等.基于TCGA 和GEO 数据库建立了肝内胆管癌的预后风险模型及验证分析[J].现代检验医学杂志,2023,38(03):40.[doi:10.3969/j.issn.1671-7414.2023.03.008]
 MAO Jun,SHEN Xiu-fen,MA Run,et al.Establishment and Verification of Prognostic Risk Model of Intrahepatic Cholangiocarcinoma Based on TCGA and GEO Database[J].Journal of Modern Laboratory Medicine,2023,38(06):40.[doi:10.3969/j.issn.1671-7414.2023.03.008]
[5]侯 丽,张 丽,唐 婧,等.基于GEO 对多发性骨髓瘤关键基因生物信息学分析及免疫浸润模式与验证[J].现代检验医学杂志,2023,38(05):23.[doi:10.3969/j.issn.1671-7414.2023.05.005]
 HOU Li,ZHANG Li,TANG Jing,et al.Bioinformatics Analysis and Verify Core Genes and Immune Infiltration Patterns in Multiple Myeloma Based on GEO[J].Journal of Modern Laboratory Medicine,2023,38(06):23.[doi:10.3969/j.issn.1671-7414.2023.05.005]
[6]曹 君,金婕妤,张 胜,等.生物信息学方法筛选IL-3和IL-3+SCF诱导的小鼠骨髓来源肥大细胞的差异表达基因及相关信号通路分析[J].现代检验医学杂志,2024,39(01):16.[doi:10.3969/j.issn.1671-7414.2024.01.004]
 CAO Jun,JIN Jieyu,ZHANG Sheng,et al.Screening of IL-3 and IL-3+SCF Induce Differentially Expressed Genes and Signaling Pathways in Bone Marrow-derived Mast Cells Based on Bioinformatics[J].Journal of Modern Laboratory Medicine,2024,39(06):16.[doi:10.3969/j.issn.1671-7414.2024.01.004]
[7]刁 迅,范绮雨,耿良栋,等.基于生物信息学分析双硫死亡相关基因PDLIM1 mRNA在多种肿瘤中的表达及临床应用价值[J].现代检验医学杂志,2024,39(01):36.[doi:10.3969/j.issn.1671-7414.2024.01.007]
 DIAO Xun,FAN Qiyu,GENG Liangdong,et al.Analysis of Expression in Disulfidptosis-Related Gene PDLIM1 mRNA in Various Tumors and Its Clinical Application Value Based on Bioinformatics[J].Journal of Modern Laboratory Medicine,2024,39(06):36.[doi:10.3969/j.issn.1671-7414.2024.01.007]
[8]钟双泽,陈尚金,林汉胜,等.基于TCGA 数据库生物信息学分析构建肾癌N6- 甲基腺苷相关LncRNA 配对模型及其预后预测价值研究[J].现代检验医学杂志,2024,39(02):68.[doi:10.3969/j.issn.1671-7414.2024.02.013]
 ZHONG Shuangze,CHEN Shangjin,LIN Hansheng,et al.Construction of N6-methyladenosine Related LncRNA Pairing Model for Renal Cell Carcinoma Based on Bioinformatics Analysis of TCGA Database and Its Prognostic Value Research[J].Journal of Modern Laboratory Medicine,2024,39(06):68.[doi:10.3969/j.issn.1671-7414.2024.02.013]
[9]陆 兵,李明虎,文 宁,等.基于TCGA 和HPA 数据库生物学信息分析肝癌组织中YEATS2 表达水平与临床预后及治疗价值[J].现代检验医学杂志,2024,39(03):8.[doi:10.3969/j.issn.1671-7414.2024.03.002]
 LU Bing,LI Minghu,WEN Ning,et al.Analysis of YEATS2 Expression Level in Hepatocellular Carcinoma Tissues with Clinical Prognosis and Therapeutic Value Based on Biological Information from TCGA and HPA Databases[J].Journal of Modern Laboratory Medicine,2024,39(06):8.[doi:10.3969/j.issn.1671-7414.2024.03.002]
[10]魏 星a,陈芊颖,龚厚文b,等.基于GEO 数据库生物信息学筛选动脉粥样硬化铁死亡关键基因和实验验证[J].现代检验医学杂志,2024,39(05):112.[doi:10.3969/j.issn.1671-7414.2024.05.021]
 WEI Xinga,CHEN Qianying,GONG Houwenb,et al.Screening Key Genes of Ferroptosis in Atherosclerosis Based on GEO Database Bioinformatics and Experimental Validation[J].Journal of Modern Laboratory Medicine,2024,39(06):112.[doi:10.3969/j.issn.1671-7414.2024.05.021]

备注/Memo

备注/Memo:
基金项目:陕西省重点研发项目(2021SF-329,2022SF-476);西安市科技计划项目(21YXYJ0095)。
作者简介:侯芳霞(1978-),女,本科,主管护师,主要从事心血管疾病护理与早期识别,E-mail: zhuzhu19821112@yeah.net。
通讯作者:唐治国(1978-),男,本科,主治医师, 主要从事冠心病介入治疗及早期防治,E-mail:tang13484600363@163.com。
更新日期/Last Update: 2022-11-15