参考文献/References:
[1] SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021[J]. CA-A Cancer Journal for Clinicians,2021, 71(1): 7-33.
[2] WEI Yu, WU Junlong, GU Weijie, et al. Germline DNA repair gene mutation landscape in Chinese prostate cancer patients[J]. European Urology, 2019, 76(3): 280-283.
[3] BRIDGES M C, DAULAGALA A C, KOURTIDIS A. LNCcation: lncRNA localization and function[J].Journal of Cell Biology, 2021, 220(2): e202009045.
[4] 刘霄, 黄晓燕, 王建华. 长链非编码RNA SNHG9 在不同肿瘤中的最新研究进展[J]. 现代检验医学杂志,2021, 36(4): 176-180.
LIU Xiao, HUANG Xiaoyan, WANG Jianhua. Reasearch progress of long non-coding RNA SNHG9 in different tumors[J]. Journal of Modern Laboratory Medicine, 2021, 36(4): 176-180.
[5] HUANG Jian, LIN Biyun, LI Benyi. Anti-androgen receptor therapies in prostate cancer: a brief update and perspective[J]. Frontiers in Oncology, 2022, 12:865350.
[6] ZHANG Boya, ZHANG Mingpeng, SHEN Chunyi,et al. LncRNA PCBP1-AS1-mediated AR/AR-V7 deubiquitination enhances prostate cancer enzalutamide resistance[J]. Cell Death & Disease, 2021, 12(10): 856.
[7] ZHANG Boya, ZHANG Mingpeng, YANG Yanjie,et al. Targeting KDM4A-AS1 represses AR/AR-Vs deubiquitination and enhances enzalutamide response in CRPC[J]. Oncogene, 2022, 41(3): 387-399.
[8] GHILDIYAL R, SAWANT M, RENGANATHAN A,et al. Loss of long noncoding RNA NXTAR in prostate cancer augments androgen receptor expression and enzalutamide resistance[J]. Cancer Research, 2022,82(1): 155-168.
[9] ZHANG Meng, SUN Yin, HUANG Chiping, et al. Targeting the lnc-OPHN1-5/androgen receptor/hnRNPA1 complex increases Enzalutamide sensitivity to better suppress prostate cancer progression[J]. Cell Death & Disease, 2021, 12(10): 855.
[10] CHEN Xu, XIE Ruihui, GU Peng, et al. Long noncoding RNA LBCS inhibits self-renewal and chemoresistance of bladder cancer stem cells through epigenetic silencing of SOX2[J]. Clinical Cancer Research, 2019,25(4): 1389-1403.
[11] GU Peng, CHEN Xu, XIE Ruihui, et al. A novel AR translational regulator lncRNA LBCS inhibits castration resistance of prostate cancer[J]. Molecular Cancer,2019, 18(1): 109.
[12] BARATA P C, SARTOR A O. Metastatic castrationsensitive prostate cancer: Abiraterone, Docetaxel, or Horizontal ellipsis [J]. Cancer, 2019, 125(11): 1777-1788.
[13] JIA A Y, SPRATT D E. Bicalutamide monotherapy with radiation therapy for localized prostate cancer: a nonevidence-based alternative[J]. International Journal of Radiation Oncology, Biology, Physics, 2022, 113(2):316-319.
[14] 管考鹏. 去势抵抗性前列腺癌药物治疗现状与进展[J]. 中国肿瘤临床, 2020, 47(8): 384-387.
GUAN Kaopeng. Current status and research progress in drug therapy for castration-resistant prostate cancer[J]. Chinese Journal of Clinical Oncology, 2020,47(8): 384-387.
[15] XING Zengshu, LI Sailian, XING Jiansheng, et al.Silencing of LINC01963 enhances the chemosensitivity of prostate cancer cells to docetaxel by targeting the miR-216b-5p/TrkB axis[J]. Laboratory Investigation,2022, 102(6): 602-612.
[16] WANG Chen, DING Tao, YANG Deping, et al. The lncRNA OGFRP1/miR-149-5p/IL-6 axis regulates prostate cancer chemoresistance[J]. Pathology Research and Practice, 2021, 224: 153535.
[17] HASAN M F, GANAPATHY K, SUN Jiao, et al.LncRNA PAINT is associated with aggressive prostate cancer and dysregulation of cancer hallmark genes[J].International Journal of Cancer, 2021,149(4): 944-958.
[18] XIE Jianjun, CHEN Xiumei, WANG Weiwan, et al.Long non-coding RNA PCDRlnc1 confers docetaxel resistance in prostate cancer by promoting autophagy[J].Journal of Cancer, 2022, 13(7): 2138-2149.
[19] WANG Ning, JIANG Yaodong, L? Shidong, et al.HOTAIR expands the population of prostatic cancer stem-like cells and causes Docetaxel resistance via activating STAT3 signaling[J]. Aging, 2020, 12(13):12771-12782.
[20] ZHANG Caixiang, WANG Wenying, LIN Jun, et al. lncRNA CCAT1 promotes bladder cancer cell proliferation, migration and invasion[J]. Int Braz J Urol, 2019, 45(3): 549-559.
[21] LIU Zheng, CHEN Qianjun, HANN S S. The functions and oncogenic roles of CCAT1 in human cancer[J].Biomedicine & Pharmacotherapy, 2019, 115: 108943.
[22] LI Xiaohui, HAN Xingtao, WEI Pengtao, et al.Knockdown of lncRNA CCAT1 enhances sensitivity of Paclitaxel in prostate cancer via regulating miR-24-3p and FSCN1[J]. Cancer Biology & Therapy, 2020,21(5): 452-462.
[23] GAO Weiyin, LIN Shuangquan, CHENG Cheng, et al. Long non-coding RNA CASC2 regulates Sprouty2 via functioning as a competing endogenous RNA for miR-183 to modulate the sensitivity of prostate cancer cells to docetaxel[J]. Archives of Biochemistry and Biophysics, 2019, 665: 69-78.
[24] FAN Yanghua, YAN Tengfeng, CHAI Yi, et al. Long noncoding RNA HOTTIP as an independent prognostic marker in cancer[J]. Clinica Chimica Acta, 2018, 482:224-230.
[25] GAO Kun, CHEN Shuhua, YANG Xiangyu. HOTTIP enhances Gemcitabine and Cisplatin resistance through sponging miR-637 in cholangiocarcinoma[J]. Frontiers in Oncology, 2021, 11: 664916.
[26] JIANG Huichuan, XIONG Wei, CHEN Lingxiao, et al. Knockdown of the long noncoding RNA HOTTIP inhibits cell proliferation and enhances cell sensitivity to cisplatin by suppressing the Wnt/β-catenin pathway in prostate cancer[J]. Journal of Cellular Biochemistry,2019, 120(6): 8965-8974.
[27] PAROLIA A, VENALAINEN E, XUE Hui, et al. The long noncoding RNA HORAS5 mediates castrationresistant prostate cancer survival by activating the androgen receptor transcriptional program[J].Molecular Oncology, 2019, 13(5): 1121-1136.
[28] PUCCI P, VENALAINEN E, ALBORELLI I, et al.LncRNA HORAS5 promotes taxane resistance in castration-resistant prostate cancer via a BCL2A1-dependent mechanism[J]. Epigenomics, 2020, 12(13):1123-1138.
[29] SURDACKI G, SZUDY-SZCZYREK A, GOR?CY A,et al. The role of immune checkpoint inhibitors in prostate cancer[J]. Annals of Agricultural and Environmental Medicine : AAEM, 2019, 26(1): 120-124.
[30] CHEN Qihua, LI Bo, LIU Deguo, et al. LncRNA KCNQ1OT1 sponges miR-15a to promote immune evasion and malignant progression of prostate cancer via up-regulating PD-L1[J]. Cancer Cell International,2020, 20: 394.
[31] ZHANG Wei, SHI Xiaolei, CHEN Rui, et al. Novel long non-coding RNA lncAMPC promotes metastasis and immunosuppression in prostate cancer by stimulating LIF/LIFR expression[J]. Molecular Therapy, 2020,28(11): 2473-2487.
[32] YAO Bing, LIU Bingqian, SHI Lei, et al. PAFR selectively mediates radioresistance and irradiationinduced autophagy suppression in prostate cancer cells[J]. Oncotarget, 2017, 8(8): 13846-13854.
[33] CHEN Changxuan, WANG Kaizhen, WANG Qian,et al. LncRNA HULC mediates radioresistance via autophagy in prostate cancer cells[J]. Brazilian Journal of Medical and Biological Research, 2018, 51(6):e7080.
[34] HU Minhua, YANG Jincheng. Down-regulation of lncRNA UCA1 enhances radiosensitivity in prostate cancer by suppressing EIF4G1 expression via sponging miR-331-3p [J]. Cancer Cell International, 2020, 20:449.
[35] FRIEDRICH M, WIEDEMANN K, REICHE K, et al.The role of lncRNAs TAPIR-1 and -2 as diagnostic markers and potential therapeutic targets in prostate cancer[J]. Cancers, 2020, 12(5): 1122.
[36] LU Tingting, TAO Xia, LI Hualei, et al. LncRNA GAS5 enhances tumor stem cell-like medicated sensitivity of paclitaxel and inhibits epithelial-to-mesenchymal transition by targeting the miR-18a-5p/STK4 pathway in prostate cancer[J]. Asian Journal of Andrology, 2022,24(6): 643-652.
[37] SHAN Yuting, HUANG Yingbo, LEE A M, et al. A long noncoding RNA, GAS5 can be a biomarker for docetaxel response in castration resistant prostate cancer [J]. Frontiers in Oncology, 2021, 11: 675215.
[38] MA Xiulong, WANG Zhongwei, REN Hongtao, et al. Long non-coding RNA GAS5 suppresses tumor progression and enhances the radiosensitivity of prostate cancer through the miR-320a/RAB21 axis[J].Cancer Management and Research, 2020, 12: 8833-8845.
[39] WANG Yuyong, CHEN Chao. LncRNA-DANCR promotes taxol resistance of prostate cancer cells through modulating the miR-33b-5p-LDHA axis[J].Disease Markers, 2022, 2022: 9516774.
[40] MA Yongliang, FAN Bo, REN Zongtao, et al. Long noncoding RNA DANCR contributes to docetaxel resistance in prostate cancer through targeting the miR-34a-5p/JAG1 pathway[J]. Onco Targets and Therapy,2019, 12: 5485-5497.
相似文献/References:
[1]廖洪利,米叶赛尔·阿不都拉.粘着斑激酶在前列腺癌中表达的研究[J].现代检验医学杂志,2016,31(05):132.[doi:10.3969/j.issn.1671-7414.2016.05.038]
LIAO Hong-li,MIYESAIER·Abdula.Research on Expression of FAK in Prostate Carcinoma[J].Journal of Modern Laboratory Medicine,2016,31(01):132.[doi:10.3969/j.issn.1671-7414.2016.05.038]
[2]范维肖,刁艳君,马越云,等.超速离心法与QIAGEN膜亲和柱法提取前列腺癌细胞培养上清外泌体的方法学比较[J].现代检验医学杂志,2019,34(03):6.[doi:10.3969/j.issn.1671-7414.2019.03.002]
FAN Wei-xiao,DIAO Yan-jun,MA Yue-yun,et al.Comparison of Ultracentrifugation and Membrane Based-Affinity ColumnMethods in Exosome Isolation from Supernatants of Prostate Cancer Cells[J].Journal of Modern Laboratory Medicine,2019,34(01):6.[doi:10.3969/j.issn.1671-7414.2019.03.002]
[3]潘良明,沈菲菲,马晓英,等.血清前列腺健康指数对 tPSA灰区前列腺癌患者的诊断价值探讨[J].现代检验医学杂志,2021,36(01):72.[doi:10.3969/j.issn.1671-7414.2021.01.019]
PAN Liang-ming,SHEN Fei-fei,MA Xiao-ying,et al.Diagnostic Value of Serum Prostate Health Index in Prostate Cancer Patients with PSA Gray Area[J].Journal of Modern Laboratory Medicine,2021,36(01):72.[doi:10.3969/j.issn.1671-7414.2021.01.019]
[4]何 跃,梁 晶,文礼红,等.前列腺癌患者血清IL-17和IL-35水平表达与临床病理特征以及预后的关系研究[J].现代检验医学杂志,2021,36(04):96.[doi:10.3969/j.issn.1671-7414.2021.04.020]
HE Yue,LIANG Jing,WEN Li-hong,et al.Study on the Relationship between Serum IL-17, IL-35 Levels andClinicopathological Features and Prognosis in Patients with Prostate Cancer[J].Journal of Modern Laboratory Medicine,2021,36(01):96.[doi:10.3969/j.issn.1671-7414.2021.04.020]
[5]荣 蓉a,古 颖a,高 翔a,等.前列腺癌组织肝激酶B1,Rab鸟嘌呤核苷酸交换因子-5mRNA表达水平与临床病理特征和预后的相关性研究[J].现代检验医学杂志,2021,36(06):1.[doi:10.3969/j.issn.1671-7414.2021.06.001]
RONG Rong,GU Ying,GAO Xiang,et al.Correlation between the Expression Levels of Liver Kinase B1, Rab Guanine Nucleotide Exchange Factor-5 mRNA in Prostate Cancer Tissues and Its Clinicopathological Characteristics and Prognosis[J].Journal of Modern Laboratory Medicine,2021,36(01):1.[doi:10.3969/j.issn.1671-7414.2021.06.001]
[6]胡道军,史文杰,孙 敏.LncRNA NEAT1/miR-23b-3p/KLF3 轴调控结直肠癌细胞的生物学功能研究[J].现代检验医学杂志,2022,37(04):1.[doi:10.3969/j.issn.1671-7414.2022.04.001]
HU Dao-jun,SHI Wen-jie,SUN Min.LncRNA NEAT1/miR-23b-3p/ KLF3 Axis Regulates the Biological Function of Colorectal Cancer Cells[J].Journal of Modern Laboratory Medicine,2022,37(01):1.[doi:10.3969/j.issn.1671-7414.2022.04.001]
[7]冯 华a,薛洪刚b,徐玉秀c.难治性肺炎支原体肺炎患儿血清长链非编码RNA 肺腺癌转移相关转录因子1 和烟酰胺核苷酸反义转氢酶RNA1 检测的临床意义[J].现代检验医学杂志,2022,37(04):7.[doi:10.3969/j.issn.1671-7414.2022.04.002]
FENG Huaa,XUE Hong-gangb,XU Yu-xiuc.Clinical Significance of Serumlong Non-coding RNA Metastasis-associated Lung Adenocarcinoma Transcript 1, Nicotinamide Nucleotide Transhydrogenase-antisense RNA1 in Children with Refractory Mycoplasma Pneumoniae Pneumonia[J].Journal of Modern Laboratory Medicine,2022,37(01):7.[doi:10.3969/j.issn.1671-7414.2022.04.002]
[8]张士保,朱斐煜,谢瑞玉,等.CircRNA-100395 基因通过启动子区甲基化调控miRNA-136-5p/Smad3 轴促进前列腺癌细胞增殖及侵袭的机制研究[J].现代检验医学杂志,2022,37(05):44.[doi:10.3969/j.issn.1671-7414.2022.05.010]
ZHANG Shi-bao,ZHU Fei-yu,XIE Rui-yu,et al.Mechanism of CircRNA-100395 Promoter Methylation Promoting Prostate Cancer Cells Proliferation and Invasion by Regulating miRNA-136-5p/Smad3 Axis[J].Journal of Modern Laboratory Medicine,2022,37(01):44.[doi:10.3969/j.issn.1671-7414.2022.05.010]
[9]阴铭迪,李 林.前列腺癌实验室诊断的最新进展[J].现代检验医学杂志,2022,37(05):194.[doi:10.3969/j.issn.1671-7414.2022.05.039]
YIN Ming-di,LI Lin.Recent Advances in Laboratory Diagnosis of Prostate Cancer[J].Journal of Modern Laboratory Medicine,2022,37(01):194.[doi:10.3969/j.issn.1671-7414.2022.05.039]
[10]孙 飞,黎春明.基于免疫细胞组织浸润的免疫评分模型预测前列腺癌免疫治疗效果及预后分析研究[J].现代检验医学杂志,2023,38(03):189.[doi:10.3969/j.issn.1671-7414.2023.03.035]
SUN Fei,LI Chun-ming.Prediction of Immunotherapy Effect and Prognosis of Prostate Cancer Based on Immune Cell Tissue Infiltration Immune Score Model[J].Journal of Modern Laboratory Medicine,2023,38(01):189.[doi:10.3969/j.issn.1671-7414.2023.03.035]