[1]曹明月,王 巍,周美宁.LPIN1/PPARA 通过抑制SLC47A1 介导的神经元铁死亡缓解帕金森病模型大鼠病情进展的机制研究[J].现代检验医学杂志,2024,39(04):63-71.[doi:10.3969/j.issn.1671-7414.2024.04.012]
 CAO Mingyue,WANG Wei,ZHOU Meining.Mechanism Study on LPIN1/PPARA Alleviating the Progression of Parkinson’s Disease in Rats by Inhibiting SLC47A1-Mediated Ferroptosis of Neurons[J].Journal of Modern Laboratory Medicine,2024,39(04):63-71.[doi:10.3969/j.issn.1671-7414.2024.04.012]
点击复制

LPIN1/PPARA 通过抑制SLC47A1 介导的神经元铁死亡缓解帕金森病模型大鼠病情进展的机制研究()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第39卷
期数:
2024年04期
页码:
63-71
栏目:
论著
出版日期:
2024-07-15

文章信息/Info

Title:
Mechanism Study on LPIN1/PPARA Alleviating the Progression of Parkinson’s Disease in Rats by Inhibiting SLC47A1-Mediated Ferroptosis of Neurons
文章编号:
1671-7414(2024)04-063-09
作者:
曹明月1王 巍1周美宁2
(1. 大庆龙南医院/ 齐齐哈尔医学院第五附属医院检验科,黑龙江大庆 163453;2. 西安医学院第三附属医院神经内科,西安 710068)
Author(s):
CAO Mingyue1WANG Wei1ZHOU Meining2
(1.Department of Clinical Laboratory,Daqing Longnan Hospital/ the Fifth Affiliated Hospital of Qiqihar Medical College,Heilongjiang Daqing 163453, China;2.Department of Neurology, the Third Affiliated Hospital of Xi’an Medical University, Xi’an 710068, China)
关键词:
帕金森病脂蛋白1过氧化物酶增殖物激活受体A溶质载体蛋白家族47 成员A1铁死亡
分类号:
R-332
DOI:
10.3969/j.issn.1671-7414.2024.04.012
文献标志码:
A
摘要:
目的 探究脂蛋白1(lipin1,LPIN1)对帕金森病(Parkinson’s disease,PD)模型大鼠病情进展的影响及其调控的可能分子机制。方法 采用6- 羟基多巴胺(6-hydroxydopamine hydrobromide,6-OHDA)注射大鼠单侧的内侧前脑束构建PD 大鼠模型,并稳定转染LPIN1 过表达腺病毒,评估大鼠行为学变化;检测大鼠脑组织中Fe2+ 和还原型谷胱甘肽(glutathione,GSH)含量及酪氨酸羟化酶(tyrosine hydroxylase,TH)蛋白水平;HE 染色观察大鼠脑组织病理变化。构建体外PD 细胞模型,检测细胞中TH,α- 突触核蛋白(α-synuclein,α-syn),LPIN1 蛋白水平及细胞活力;转染LPIN1 小干扰siRNA 序列和过表达载体及过氧化物酶增殖物激活受体A(peroxisome proliferator-activated receptor A,PPARA)小干扰RNA(small interfering RNA,siRNA)和过表达载体,或用铁死亡诱导剂Erastin 处理细胞24 h,后用6-OHDA 处理细胞48 h。检测各组细胞中Fe2+ 含量、活性氧(reactive oxygen species,ROS)、丙二醛(malondialdehyde,MDA)、GSH 和炎症因子水平以评估铁死亡;CCK-8 检测细胞增殖活力,Western blot 法检测铁死亡相关蛋白表达。通过STRING 数据库预测LPIN1 的互作蛋白PPARA,利用Co-IP 分析进行验证;JASPAR 生物信息学网站预测PPARA与溶质载体蛋白家族47 成员A1(solute carrier family 47 member 1,SLC47A1)启动子的结合位点,利用Ch-IP 分析进行验证。结果 模型组大鼠皮毛悚立,表现出身体持续震颤、动作迟缓、活动能力减弱等PD 症状;LPIN1 组大鼠运动行为及PD 症状较模型组改善/ 减轻。与假手术组相比,模型组大鼠运动总路程缩短、平均速度降低、步长减小、总静止时间延长、步宽增宽、步态变异率增大,差异具有统计学意义(t=6.816,7.026,26.556,7.454,8.503,7.971,均P<0.05);模型组大鼠脑组织中Fe2+ 含量升高,GSH 含量及TH 蛋白表达降低,差异具有统计学意义(t=8.305,13.305,7.709,均P<0.05)。LPIN1 组大鼠行为学评估、各指标水平及脑组织病理改变较模型组明显改善/ 减轻。6-OHDA呈剂量依赖性降低PC-12 细胞活力及TH,LPIN1 蛋白水平,升高α-syn 蛋白水平,差异具有统计学意义(F=31.023,7.350,9.124,15.841,均P<0.05)。沉默LPIN1 加剧了6-OHDA 对PC-12 细胞活力的抑制作用(t=2.209,P<0.05),过表达LPIN1 则可抵消6-OHDA 的作用(t=4.989,P<0.05)。过表达LPIN1 降低IL-1β,IL-6 分泌,升高SLC47A1 和GPX4蛋白水平,降低Fe2+,MDA 含量和ROS 水平,升高GSH 含量(t=3.013 ~ 11.639,均P<0.05);Erastin 可逆转LPIN1过表达对铁死亡的抑制作用,降低PC-12 细胞活力(t=3.087 ~ 7.581,均P<0.05)。LPIN1 与PPARA 蛋白互作并促进PPARA 表达,PPARA 与SLC47A1 启动子结合并促进SLC47A1 转录激活。过表达PPARA 可抵消LPIN1 沉默对PC-12细胞的影响。结论 过表达LPIN1 可能通过抑制PPARA/SLC47A1 轴介导的铁死亡,减少神经元细胞凋亡,进而缓解PD 模型大鼠的病情进展。
Abstract:
Objective To investigate the effect of lipin1 (LPIN1) on the progression of Parkinson’s disease (PD) in rats and the possible molecular mechanism of its regulation. Methods The PD rat model was established by injection of 6-Hydroxydopamine hydrobromide (6-OHDA) into the medial forebrain tract of rats, and the LPIN1-overexpressing adenovirus was stably transfected to evaluate the behavioral changes of rats. The content of Fe2+ and Glutathione (GSH) and the protein level of tyrosine hydroxylase (TH) in rat brain were detected, and HE staining was used to observe the pathological changes in rat brains. The PD cell model was constructed in vitro, and TH, α-synuclein (α-syn), LPIN1 protein levels and cell viability were detected. LPIN1 small interfering siRNA sequence and overexpression vector and peroxisome proliferator-activated receptor (PPARA) small interfering (siRNA) and overexpression vector were transfected, or ferroptosis inducer erastin was used to treat cell for 24 h, then cells were treated with 6-OHDA for 48h. The levels of Fe2+, reactive oxygen species (ROS), malondialdehyde (MDA), GSH and inflammatory factors in cells were detected to evaluate ferroptosis. Cell viability was detected with CCK-8, and the expressions of ferroptosis related proteins were detected with Western blot. The interacting protein PPARA of LPIN1 was predicted by STRING database and verified by Co-IP analysis. The binding site of PPARA to the promoter of solute carrier family 47 member 1(SLC47A1) was predicted by JASPAR bioinformatics and verified by Ch-IP analysis. Results The fur of the rats in the model group was frightened, and PD symptoms such as continuous tremor, slow movement and weakened activity were shown. The motor behavior and PD symptoms of LPIN1 group were improved/alleviated compared with the model group. Compared with the sham operation group, the total distance of the model group was shortened, the average speed was reduced, and the step length was reduced, while the total resting time was prolonged, the step width was widened, and the gait variation rate was increased, and the differences were significant (t=4.470 ~ 26.556, all P<0.05). Compared with sham operation group, Fe2+ content in brain tissue of model group was increased, while GSH content and TH protein expression were decreased, with significance differences (t=8.305, 13.305, 7.709, all P<0.05). Compared with the model group, the behavioral evaluation, the level of indexes and the pathological changes of brain tissue in LPIN1 group were improved/alleviated. In addition, 6-OHDA decreased PC-12 cell viability, reduced the levels of TH and LPIN1 protein, and increased the level of α-syn protein in a dosedependent manner, and the differences were significant (F=31.023, 7.350, 9.124, 15.841, all P<0.05). Silencing LPIN1 intensified the inhibitory effect of 6-OHDA on the viability of PC-12 cells (t=2.209, P<0.05), and overexpression of LPIN1 could counteract the effect of 6-OHDA. Overexpression of Lpin1 decreased the secretion of IL-1β and IL-6, increased the protein levels of SLC47A1 and GPX4, decreased the levels of Fe2+, MDA and ROS, and increased GSH content (t=3.013 ~ 11.639, all P<0.05). Erastin reversed the inhibitory effect of Lpin1 overexpression on ferroptosis, and reduced the viability of PC-12 cells (t=3.087 ~ 7.581, all P<0.05). LPIN1 interacted with PPARA protein and promoted PPARA expression, while PPARA bound to SLC47A1 promoter and promoted SLC47A1 transcriptional activation. Overexpression of PPARA counteracted the effect of Lpin1 silencing on PC-12 cells. Conclusion Overexpression of LPIN1 may reduce neuronal cell apoptosis by inhibiting ferroptosis mediated by PPARA/SLC47A1 axis, thus alleviating the progression of PD model rats.

参考文献/References:

[1] COSTA H N, ESTEVES A R, EMPADINHAS N, et al. Parkinson’s disease: a multisystem disorder[J]. Neuroscience Bulletin, 2023, 39(1): 113-124.
[2] YE Hui, ROBAK L A, YU Meigen, et al. Genetics and pathogenesis of Parkinson’s syndrome [J]. Annual Review of Pathology, 2023, 18: 95-121.
[3] SCHALKAMP A K, PEALL K J, HARRISON N A, et al. Wearable movement-tracking data identify Parkinson’s disease years before clinical diagnosis[J]. Nature Medicine, 2023, 29(8): 2048-2056.
[4] LEITE SILVA A B R, GON?ALVES DE OLIVEIRA R W, DI?GENES G P, et al. Premotor, nonmotor and motor symptoms of Parkinson’s disease: a new clinical state of the art [J]. Ageing Research Reviews, 2023, 84: 101834.
[5] VISEUX F J F, DELVAL A, SIMONEAU M, et al. Pain and Parkinson’s disease:current mechanism and management updates[J]. European Journal of Pain (London, England), 2023, 27(5): 553-567.
[6] DING Xüshen, GAO Li, HAN Zheng, et al. Ferroptosis in Parkinson’s disease: molecular mechanisms and therapeutic potential[J]. Ageing Research Reviews, 2023, 91: 102077.
[7] CHU Jie, LI Jingwen, SUN Lin, et al. The role of cellular defense systems of ferroptosis in Parkinson’s disease and Alzheimer’s disease[J]. International Journal of Molecular Sciences, 2023, 24(18): 14108.
[8] 王杰, 吴蔚.铁死亡与神经系统疾病[J]. 中国医药科学, 2023, 13(22):26-29, 34 WANG Jie, WU Wei.Ferroptosis and nervous system disease [J]. China Medicine and Pharmacy, 2019, 13(22):26-29, 34.
[9] XING Na, DONG Ziye, WU Qiaoli, et al. Identification of ferroptosis related biomarkers and immune infiltration in Parkinson’s disease by integrated bioinformatic analysis [J]. BMC Medical Genomics,2023, 16(1): 55.
[10] LUTKEWITTE A J, FINCK B N. Regulation of signaling and metabolism by lipin-mediated phosphatidic acid phosphohydrolase activity[J]. Biomolecules, 2020, 10(10):1386.
[11] JAMA A, ALSHUDUKHI A A, BURKE S, et al. Lipin1 plays complementary roles in myofibre stability and regeneration in dystrophic muscles [J]. Journal of Physiology, 2023, 601(5): 961-978.
[12] WANG Meijian, XIE Min, YU Shuyan, et al. Lipin1 alleviates autophagy disorder in sciatic nerve and improves diabetic peripheral neuropathy[J]. Molecular Neurobiology, 2021, 58(11): 6049-6061.
[13] HAN Jiang, PU Cuixia, XIAO Qiuxia, et al. MiRNA-124-3p targeting of LPIN1 attenuates inflammation and apoptosis in aged male rats cardiopulmonary bypass model of perioperative neurocognitive disorders [J]. Experimental Gerontology, 2021, 155: 111578.
[14] HUANG Zifeng, HAN Jiajun, WU Peipei, et al. Sorting nexin 5 plays an important role in promoting ferroptosis in Parkinson’s disease[J]. Oxidative Medicine and Cellular Longevity, 2022, 2022: 5463134.
[15] MAHONEY-S?NCHEZ L, BOUCHAOUI H, AYTON S, et al. Ferroptosis and its potential role in the physiopathology of Parkinson’s disease[J]. Progress in Neurobiology, 2021, 196: 101890.
[16] LIU Jiao, KANG Rui, TANG Daolin. Signaling pathways and defense mechanisms of ferroptosis[J]. FEBS Journal, 2022, 289(22): 7038-7050.
[17] ZHOU Borong, LIU Jiao, KANG Rui, et al. Ferroptosis is a type of autophagy-dependent cell death [J]. Seminars in Cancer Biology, 2020, 66: 89-100.
[18] KOSTRZEWA R M. Neonatal 6-hydroxydopamine lesioning of rats and dopaminergic neurotoxicity: proposed animal model of Parkinson’s disease[J]. Journal of Neural Transmission (Vienna, Austria : 1996), 2022, 129(5/6): 445-461.
[19] YASUHARA T.Neurobiology research in Parkinson’s disease [J]. International Journal of Molecular Sciences, 2020, 21(3):793.
[20] MUHAMMAD F, LIU Yan, WANG Ningbo, et al. Neuroprotective effects of cannabidiol on dopaminergic neurodegeneration and α-synuclein accumulation in C. elegans models of Parkinson’s disease [J]. Neurotoxicology, 2022, 93:128-139.
[21] SALARAMOLI S, JOSHAGHANI H R, HOSSEINI M, et al. Therapeutic effects of selenium on alphasynuclein accumulation in substantia nigra pars compacta in a rat model of Parkinson’s disease: behavioral and biochemical outcomes[J]. Biological Trace Element Research, 2024, 202(3): 1115-1125.
[22] 白雪, 董巧云, 赵丽, 等. 帕金森病患者血清miR-7和α-Syn 表达水平与认知功能障碍的相关性研究[J]. 现代检验医学杂志, 2023, 38(4):78-82. BAI Xue, DONG Qiaoyun, ZHAO Li, et al. Correlation between serum miR-7 andα-Syn expression levels and cognitive impairment in patients with Parkinson’s disease [J]. Journal of Modern Laboratory Medicine, 2023, 38(4):78-82.
[23] URSINI F, MAIORINO M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4 [J]. Free Radical Biology & Medicine, 2020, 152:175-185.
[24] LIN Zhi, LIU Jiao, LONG Fei, et al. The lipid flippase SLC47A1 blocks metabolic vulnerability to ferroptosis[J]. Nature Communications, 2022, 13(1): 7965.
[25] XIE Y, HOU W, SONG X, et al. Ferroptosis: process and function[J]. Cell Death and Differentiation, 2016, 23(3): 369-379.
[26] COSTA I, BARBOSA D J, BENFEITO S, et al. Molecular mechanisms of ferroptosis and their involvement in brain diseases [J]. Pharmacology Therapeutics, 2023, 244: 108373.
[27] P?REZ-SEGURA I, SANTIAGO-BALMASEDA A, RODR?GUEZ-HERN?NDEZ L D, et al. PPARs and their neuroprotective effects in Parkinson’s disease: a novel therapeutic approach in α-Synucleinopathy?[J]. International Journal of Molecular Sciences, 2023, 24(4):3264.
[28] KAMBEY P A, LIU Wenya, WU Jiao, et al. Singlenuclei RNA sequencing uncovers heterogenous transcriptional signatures in Parkinson’s disease associated with nuclear receptor-related factor 1 defect [J]. Neural Regeneration Research, 2023, 18(9): 2037-2046.

相似文献/References:

[1]武 琪a,陈 亮b,张宝华c.帕金森病患者血清和脑脊液褪黑素水平变化及其临床意义[J].现代检验医学杂志,2017,32(05):90.[doi:10.3969/j.issn.1671-7414.2017.05.017]
 WU Qia,CHEN Liangb,ZHANG Bao-huac.Changes and Clinical Significance of Melatonin in Blood and Cerebrospinal Fluid of Patients with Parkinson's Disease[J].Journal of Modern Laboratory Medicine,2017,32(04):90.[doi:10.3969/j.issn.1671-7414.2017.05.017]
[2]武 琪a,张宝华b.Nrf2基因启动子-653G/A,-651G/A和-617C/A位点单核苷酸多态性与帕金森病易感性的关联性研究[J].现代检验医学杂志,2017,32(06):60.[doi:10.3969/j.issn.1671-7414.2017.06.001]
 WU Qia,ZHANG Bao-huab.Association between Nrf2 Gene -653G/A,-651G/A and -617C/A Polymorphism and Susceptibility of Parkinson's Disease[J].Journal of Modern Laboratory Medicine,2017,32(04):60.[doi:10.3969/j.issn.1671-7414.2017.06.001]
[3]李泽东,詹 贞,刘 忆,等.帕金森病患者血清鳞状细胞癌抗原(SCC-Ag)表达的临床意义[J].现代检验医学杂志,2019,34(06):70.[doi:10.3969 / j.issn.1671-7414.2019.06.017]
 LI Ze-dong,ZHAN Zhen,LIU Yi,et al.Significance of SCC Antigen Expression in Parkinson’s Disease[J].Journal of Modern Laboratory Medicine,2019,34(04):70.[doi:10.3969 / j.issn.1671-7414.2019.06.017]
[4]尚天明,毕开湘.唾液 α- 突触核蛋白 (SNCA) 与嗅觉评估在帕金森病早期筛查中的应用研究[J].现代检验医学杂志,2020,35(06):95.[doi:doi:10.3969/j.issn.1671-7414.2020.06.023]
 SHANG Tian-ming,BI Kai-xiang.Application Research of Olfactory Assessment and Salivary SNCA in EarlyScreening of Parkinson’s Disease[J].Journal of Modern Laboratory Medicine,2020,35(04):95.[doi:doi:10.3969/j.issn.1671-7414.2020.06.023]
[5]李群英,甄时建,何树光,等.帕金森病患者治疗期间血清miR-153,miR-128b水平表达与非运动症状的相关性研究[J].现代检验医学杂志,2021,36(05):120.[doi:10.3969/j.issn.1671-7414.2021.05.027]
 LI Qun-ying,ZHEN Shi-jian,HE Shu-guang,et al.Research on Correlation between Expression of Serum miR-153, miR-128bLevels and Non-motor Symptoms in Patients with Parkinson’s DiseaseDuring Treatment Period[J].Journal of Modern Laboratory Medicine,2021,36(04):120.[doi:10.3969/j.issn.1671-7414.2021.05.027]
[6]闫 欣,商素亮,李 娜,等.血浆S1P和HDL-C表达水平与帕金森病患者临床症状的相关性研究[J].现代检验医学杂志,2022,37(03):182.[doi:10.3969/j.issn.1671-7414.2022.03.038]
 YAN Xin,SHANG Su-liang,LI Na,et al.Correlation between Plasma S1P, HDL-C Expressions Levels and Clinical Symptoms in Patients with Parkinson’s Disease[J].Journal of Modern Laboratory Medicine,2022,37(04):182.[doi:10.3969/j.issn.1671-7414.2022.03.038]
[7]白 雪,董巧云,赵 丽,等.帕金森病患者血清miR-7 和α-Syn 表达水平与认知功能障碍的相关性研究[J].现代检验医学杂志,2023,38(04):78.[doi:10.3969/j.issn.1671-7414.2023.04.014]
 BAI Xue,DONG Qiaoyun,ZHAO Li,et al.Correlation between Serum miR-7 and α-Syn Expression Levels and Cognitive Impairment in Patients with Parkinson’s Disease[J].Journal of Modern Laboratory Medicine,2023,38(04):78.[doi:10.3969/j.issn.1671-7414.2023.04.014]
[8]郑德泉,江 华,林锦标,等.帕金森病患者血清NPASDP-4,MBP 水平表达与认知功能障碍及严重程度的诊断价值研究[J].现代检验医学杂志,2024,39(03):17.[doi:10.3969/j.issn.1671-7414.2024.03.003]
 ZHENG Dequan,JIANG Hua,LIN Jinbiao,et al.Study on the Diagnostic Value of Serum NPASDP-4 and MBP Level Expression with Cognitive Dysfunction and Severity in Parkinson’s Disease Patients[J].Journal of Modern Laboratory Medicine,2024,39(04):17.[doi:10.3969/j.issn.1671-7414.2024.03.003]
[9]牛荣荣,宋世雄,宋 蕾.帕金森病患者血清FGF22 和CXCL16 水平检测对认知障碍的诊断价值[J].现代检验医学杂志,2024,39(03):152.[doi:10.3969/j.issn.1671-7414.2024.03.026]
 NIU Rongrong,SONG Shixiong,SONG Lei.Diagnostic Value of Serum FGF22 and CXCL16 Levels in Patients with Parkinson’s Disease for Cognitive Impairment[J].Journal of Modern Laboratory Medicine,2024,39(04):152.[doi:10.3969/j.issn.1671-7414.2024.03.026]

备注/Memo

备注/Memo:
作者简介:曹明月(1981-),女,学士,主管技师,研究方向:免疫临床基础检验技术,E-mail:8099783@qq.com。
通讯作者:周美宁(1977-),女,学士,副主任医师,研究方向:脑血管疾病,帕金森疾病,E-mail:349053938@qq.com。
更新日期/Last Update: 2024-07-15