[1]刘 倩,边 娜,孙旸园.阿尔茨海默病患者脑脊液SMOC1和OLFML3水平表达及对病情程度的评估价值[J].现代检验医学杂志,2024,39(06):124-129.[doi:10.3969/j.issn.1671-7414.2024.06.021]
 LIU Qian,BIAN Na,SUN Yangyuan.Expression of SMOC1 and OLFML3 in Cerebrospinal Fluid of Patients with Alzheimer’s Disease and Its Value in Evaluating the Severity of the Disease[J].Journal of Modern Laboratory Medicine,2024,39(06):124-129.[doi:10.3969/j.issn.1671-7414.2024.06.021]
点击复制

阿尔茨海默病患者脑脊液SMOC1和OLFML3水平表达及对病情程度的评估价值()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第39卷
期数:
2024年06期
页码:
124-129
栏目:
论著
出版日期:
2024-11-15

文章信息/Info

Title:
Expression of SMOC1 and OLFML3 in Cerebrospinal Fluid of Patients with Alzheimer’s Disease and Its Value in Evaluating the Severity of the Disease
文章编号:
1671-7414(2024)06-124-06
作者:
刘 倩边 娜孙旸园
(宝鸡市人民医院神经内一科, 陕西宝鸡 721000)
Author(s):
LIU QianBIAN NaSUN Yangyuan
(the First Department Neurology, Baoji People’s Hospital, Shaanxi Baoji 721000, China)
关键词:
阿尔茨海默病人类SPARC 相关模块化钙结合蛋白1嗅觉介导素3
分类号:
R749.1;R446.14
DOI:
10.3969/j.issn.1671-7414.2024.06.021
文献标志码:
A
摘要:
目的 探讨阿尔茨海默病(Alzheimer’s disease,AD)患者脑脊液人类SPARC 相关模块化钙结合蛋白1(SPARCrelated modular calcium binding 1,SMOC1)、嗅觉介导素3(olfactomedin-3,OLFM3)水平表达及对病情程度的评估价值。方法 选取2020 年1 月~ 2023 年1 月宝鸡市人民医院诊治的AD 患者108 例(AD 组),以同期行腰椎穿刺检查的非认知功能障碍患者60 例为对照组。应用酶联免疫吸附实验(ELISA)检测脑脊液SMOC1,OLFML3,β- 淀粉样蛋白(Aβ1-40,Aβ1-42)和P-Tau 蛋白水平。采用Pearson 相关分析探讨脑脊液SMOC1, OLFML3 水平与临床指标的相关性。采用Logistic 回归分析影响AD 患者病情程度的因素。采用受试者工作特征(ROC)曲线研究脑脊液SMOC1, OLFML3对AD 病情程度的预测价值。结果 AD 组脑脊液SMOC1(68.47±11.23 ng/L),OLFML3(110.58±21.39 ng/L),P-Tau(569.07±97.24 ng/L)及CDR 评分(1.5 分) 高于对照组(22.60±4.16 ng/L,36.94±6.97ng/L,182.66±55.37 ng/L,0),脑脊液Aβ1-42(292.23±55.36 ng/L),MoCA 评分(7.88±2.05 分)、MMSE 评分(13.15±2.39 分)低于对照组(397.16±60.57ng/L,23.13±4.31 分,28.02±4.26 分),差异具有统计学意义(t=30.465,25.885,28.313,51.211,11.380,31.038,29.013,均P < 0.05)。AD 组脑脊液SMOC1,OLFML3 分别与P-Tau,CDR 评分呈正相关(r=0.703,0.634;0.682,0.713,均P < 0.05),与Aβ1-42,MoCA 评分、MMSE 评分呈负相关(r=-0.662,-0.599;-0.660,-0.588;-0.745,-0.731,均P < 0.05)。中重度组AD 患者脑脊液SMOC1(89.90±12.17 ng/L),OLFML3(142.46±22.48ng/L),P-Tau(618.83±98.19 ng/L) 高于轻度组(56.36±10.52 ng/L,92.56±20.25 ng/L, 542.25±95.30 ng/L), 而脑脊液Aβ1-42(260.76±53.60 ng/L)低于轻度组 (310.02±56.54 ng/L),差异具有统计学意义(t=15.029,11.818,3.968,4.430, 均P<0.05)。脑脊液SMOC1(OR=1.451,95%CI:1.120 ~ 1.879),OLFML3(OR=1.442,95%CI:1.096 ~ 1.897),P-Tau(OR=1.589,95%CI:1.258 ~ 2.006)是影响中重度AD 发生的危险因素,Aβ1-42(OR=0.628,95%CI:0.493 ~ 0.799)是保护因素。脑脊液SMOC1,OLFML3 及联合预测对中重度AD患者评估的曲线下面积(95%CI)分别为0.882(0.844 ~ 0.929),0.846(0.805 ~ 0.877)和0.931(0.883 ~ 0.965),联合预测大于各单项指标检测,差异具有统计学意义(Z=3.558,4.172,P=0.004,0.000)。结论 AD 患者脑脊液SMOC1,OLFML3 水平升高,两者与AD 患者病情程度有关,脑脊液SMOC1,OLFML3 联合检测对中重度AD 具有较高的预测价值。
Abstract:
Objective To explore the expression levels of SPARC related modular calcium binding 1 (SMOC1) and olfactomedin-3 (OLFM3) in the cerebrospinal fluid of Alzheimer’s disease (AD) patients and their value in evaluating the severity of the disease. Methods A total of 108 AD patients (AD group) treated at Baoji People’s Hospital from January 2020 to January 2023 were selected, and 60 non cognitive dysfunction patients who underwent lumbar puncture examination during the same period were selected as the control group. Enzyme-linked immunosorbent assay (ELISA) was used to detect cerebrospinal fluid SMOC1, OLFML3, β-Amyloid protein (Aβ1-40, Aβ1-42) and P-Tau protein levels. Pearson correlation analysis was conducted to analyze cerebrospinal fluid SMOC1, and OLFML3 levels and their correlation with clinical indicators. Logistic regression was used to analyze the influencing factors of AD severity. Receiver operating characteristic curves were used to analyze the predictive value of cerebrospinal fluid SMOC1 and OLFML3 on the severity of Alzheimer’s disease. Results The levels of SMOC1 (68.47±11.23 ng/L ), OLFML3 (110.58±21.39 ng/L), P-Tau (569.07±97.24 ng/L)and CDR score(1.5 score) in the cerebrospinal fluid of the AD group were higher than those in the control group(22.60±4.16 ng/L,36.94±6.97ng/L,182.66 ±55.37,0 score), while Aβ1-42(292.23±55.36 ng/L), MoCA score(7.88±2.05 score) and MMSE score (13.15±2.39 score)were lower than those in the control group(397.16±60.57ng/L,23.13±4.31 score,28.02±4.26 score), and the differences were statistically significant (t=30.465,25.885,28.313,51.211,11.380,31.038,29.013,all P < 0.05). SMOC1 and OLFML3 of the cerebrospinal fluid in the AD group were positively correlated with P-Tau and CDR score (r=0.703, 0.634;0.682,0.713,all P < 0.05),but were negatively correlated with Aβ1-42, MoCA score and MMSE score (r=-0.662,- 0.599;-0.660,-0.588;-0.745,-0.731,all P < 0.05). SMOC1 (89.90±12.17 ng/L ), OLFML3 (142.46±22.48), and P-Tau (618.83±98.19 ng/L) in the cerebrospinal fluid of AD patients in the moderate to severe group were higher than those in the mild group(56.36±10.52 ng/L,92.56±20.25 ng/L, 542.25±95.30 ng/L),Aβ1-42 in the moderate to severe group (260.76±53.60 ng/L) was lower than those in the mild group (310.02±56.54 ng/L), and the differences were statistically significant (t=15.029,11.818,3.968,4.430, all P<0.05). SMOC1 (OR=1.451,95%CI:1.120 ~ 1.879), OLFML3 (OR=1.442, 95%CI:1.096 ~ 1.897) and P-Tau(OR=1.589,95%CI:1.258 ~ 2.006) in cerebrospinal fluid were risk factors for moderate to severe cognitive impairment in AD patients, while Aβ1-42 was a protective factor. The AUC (95%CI) of SMOC1, OLFML3 in cerebrospinal fluid, and their combinative forecasting evaluating moderate to severe AD patients were 0.882 (0.844 ~ 0.929), 0.846 (0.805 ~ 0.877) and 0.931 (0.883 ~ 0.965), respectively, and their combinative forecasting was higher than two individual indicators (Z=3.558, 4.172, P=0.004, 0.000). Conclusion The levels of SMOC1 and OLFML3 in cerebrospinal fluid are elevated in AD patients, which are related to the severity of AD. The combinative forecasting of the two has high predictive value for moderate to severe AD.

参考文献/References:

[1] REN Rujing, QI Jinlei, LIN Shaohui, et al. The China Alzheimer report 2022[J]. General Psychiatry, 2022,35(1): e100751.
[2] SCHELTENS P, DE STROOPER B, KIVIPELTO M, et al. Alzheimer’s disease[J]. Lancet, 2021, 397(10284):1577-1590.
[3] 李婷婷, 陈凤, 刘然. 阿尔茨海默病患者血清FGF23和ZAG 水平表达与认知功能的相关性分析[J].现代检验医学杂志, 2023, 38(6): 166-169. LI Tingting, CHEN Feng, LIU Ran. Correlation analysis between serum FGF23 and ZAG levels and cognitive function in patients with Alzheimer’s disease[J]. Journal of Modern Laboratory Medicine,2023, 38(6): 166-169.
[4] WANG Yaqing, GU Jia, DU Anning, et al. SPARCrelated modular calcium binding 1 regulates aortic valve calcification by disrupting BMPR-II/p-p38 signalling[J]. Cardiovascular Research, 2022, 118(3):913-928.
[5] DAMMER E B, PING Lingyan, DUONG D M, et al. Multi-platform proteomic analysis of Alzheimer’s disease cerebrospinal fluid and plasma reveals network biomarkers associated with proteostasis and the matrisome[J]. Alzheimer’s Research Therapy, 2022,14(1): 174.
[6] TANG Shirong, WANG Tiancheng, ZHANG Xiaogang, et al. Olfactomedin-3 enhances seizure activity by interacting with AMPA receptors in epilepsy models[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 722.
[7] WANG Hong, DEY K K, CHEN P C , e t a l . Integrated analysis of ultra-deep proteomes in cortex,cerebrospinal fluid and serum reveals a mitochondrial signature in Alzheimer’s disease[J]. Molecular Neurodegeneration, 2020, 15(1): 43.
[8] NASREDDINE Z S, PHILLIPS N A, B?DIRIAN V, et al. The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment[J]. Journal of the American Geriatrics Society, 2005, 53(4): 695-699.
[9] FOLSTEIN M F, FOLSTEIN S E, MCHUGH P R. Mini-mental state. A practical method for grading the cognitive state of patients for the clinician[J]. Journal of Psychiatric Research, 1975, 12(3): 189-198.
[10] LI Yan, XIONG Chengjie, ASCHENBRENNER A J, et al. Item response theory analysis of the clinical dementia rating[J]. Alzheimer’s & Dementia, 2021,17(3): 534-542.
[11] AVILA J, PERRY G. A multilevel view of the development of Alzheimer’s disease[J]. Neuroscience,2021, 457: 283-293.
[12] JUCKER M, WALKER L C. Alzheimer’s disease: from immunotherapy to immunoprevention[J]. Cell, 2023,186(20): 4260-4270.
[13] MONTGOMERY M K, BAYLISS J, DEVEREUX C, et al. SMOC1 is a glucose-responsive hepatokine and therapeutic target for glycemic control[J]. Science Translational Medicine, 2020, 12(559): eaaz8048.
[14] BAI Bing, WANG Xusheng, LI Yuxin, et al. Deep multilayer brain proteomics identifies molecular networks in Alzheimer’s disease progression[J]. Neuron, 2020, 105(6): 975-991,e7.
[15] DELGADO LAGOS F, ELGHEZNAWY A,KYSELOVA A, et al. Secreted modular calciumbinding protein 1 binds and activates thrombin to account for platelet hyperreactivity in diabetes[J]. Blood, 2021, 137(12): 1641-1651.
[16] WEI Hong, XU Yuhao, CHEN Qi, et al. Mesenchymal stem cell-derived exosomal miR-223 regulates neuronal cell apoptosis[J]. Cell Death & Disease, 2020, 11(4):290.
[17] STEVENSON T J, DIERIKS B V. Wrapping up the role of pericytes in Parkinson’s disease[J]. Neural Regeneration Research, 2023, 18(11): 2395-2396.
[18] LYUBCHENKO T, COLLINS H K, VANG K A, et al. SMOC1 and IL-4 and IL-13 cytokines interfere with Ca2+ mobilization in primary human keratinocytes[J]. Journal of Investigative Dermatology, 2021, 141(7): 1792-1801.e5.
[19] DRUMMOND E, KAVANAGH T, PIRES G, et al. The amyloid plaque proteome in early onset Alzheimer’s disease and Down syndrome[J]. Acta Neuropathologica Communications, 2022, 10(1): 53.
[20] YIN Zhuoran, HERRON S, SILVEIRA S, et al. Identification of a protective microglial state mediated by miR-155 and interferon-γ signaling in a mouse model of Alzheimer’s disease[J]. Nature Neuroscience,2023, 26(7): 1196-1207.
[21] LAURIA G, CURCIO R, TUCCI P. A machine learning approach for highlighting microRNAs as biomarkers linked to amyotrophic lateral sclerosis diagnosis and progression[J]. Biomolecules, 2023, 14(1): 47.
[22] RODRIGUES E M, GIOVANINI A F, RIBAS C A P M, et al. The nervous system development regulator neuropilin-1 as a potential prognostic marker and therapeutic target in brain cancer[J]. Cancers, 2023,15(20): 4922.

相似文献/References:

[1]张宝华a,武 琪b.Nrf2基因启动子rs35652124,rs6706649和rs6721961位点单核苷酸多态性与阿尔茨海默病的相关性研究[J].现代检验医学杂志,2017,32(05):62.[doi:10.3969/j.issn.1671-7414.2017.05.017]
 ZHANG Bao-huaa,WU Qib.Association between Nrf2 Gene rs35652124,rs6706649 and rs6721961 Polymorphism and Alzheimer's Disease[J].Journal of Modern Laboratory Medicine,2017,32(06):62.[doi:10.3969/j.issn.1671-7414.2017.05.017]
[2]孙祝平,陈红英,陈思路.老年阿尔茨海默病患者血清Lp-PLA2,NLRP3 水平表达及其与认知功能损害的相关性[J].现代检验医学杂志,2020,35(01):49.[doi:10.3969/j.issn.1671-7414.2020.01.013]
 SUN Zhu-ping,CHEN Hong-ying,CHEN Si-lu.Expression of Serum Lp-PLA2 and NLRP3 in Elderly Patients with Alzheimer's Disease and Its Relationship with Cognitive Impairment[J].Journal of Modern Laboratory Medicine,2020,35(06):49.[doi:10.3969/j.issn.1671-7414.2020.01.013]
[3]李婷婷,陈 凤,刘 然.阿尔茨海默病患者血清FGF23 和ZAG 水平表达与认知功能的相关性分析[J].现代检验医学杂志,2023,38(06):166.[doi:10.3969/j.issn.1671-7414.2023.06.030]
 LI Tingting,CHEN Feng,LIU Ran.Correlation Analysis between Serum FGF23 and ZAG Levels and Cognitive Function in Patients with Alzheimer’s Disease[J].Journal of Modern Laboratory Medicine,2023,38(06):166.[doi:10.3969/j.issn.1671-7414.2023.06.030]

备注/Memo

备注/Memo:
基金项目:陕西省卫生健康科研项目(2020E009)。
作者简介:刘倩(1985-),女,本科,主治医师,研究方向:脑血管病相关内容,E-mail:LQ56138625@163.com。
通讯作者:边娜(1985-),女,硕士研究生,主治医师,研究方向:脑血管病相关内容,E-mail:412468312@qq.com。
更新日期/Last Update: 2024-11-15