[1]林春妹,彭维林,林壹明.福建泉州地区新生儿戊二酸血症II型患者的实验室筛查和基因诊断分析[J].现代检验医学杂志,2024,39(06):185-188+228.[doi:10.3969/j.issn.1671-7414.2024.06.032]
 LIN Chunmei,PENG Weilin,LIN Yiming.Laboratory Screening and Genetic Diagnosis Analysis of Patients with Neonatal Glutaric Acidemia Type II in Quanzhou, Fujian Province[J].Journal of Modern Laboratory Medicine,2024,39(06):185-188+228.[doi:10.3969/j.issn.1671-7414.2024.06.032]
点击复制

福建泉州地区新生儿戊二酸血症II型患者的实验室筛查和基因诊断分析()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第39卷
期数:
2024年06期
页码:
185-188+228
栏目:
论著
出版日期:
2024-11-15

文章信息/Info

Title:
Laboratory Screening and Genetic Diagnosis Analysis of Patients with Neonatal Glutaric Acidemia Type II in Quanzhou, Fujian Province
文章编号:
1671-7414(2024)06-185-05
作者:
林春妹彭维林林壹明
(泉州市妇幼保健院/ 儿童医院检验科,福建泉州 362000)
Author(s):
LIN Chunmei PENG Weilin LIN Yiming
(Department of Clinical Laboratory, Quanzhou Wonen’s and Children’s Hospital, Fujina Quanzhou 362000, China)
关键词:
戊二酸血症II 型新生儿筛查串联质谱技术电子转移黄素蛋白脱氢酶基因
分类号:
R722.11;Q754
DOI:
10.3969/j.issn.1671-7414.2024.06.032
文献标志码:
A
摘要:
目的 了解福建省泉州地区戊二酸血症II 型(glutaric acidemia type II,GA-II)新生儿发病率、生化表现与基因突变特征。方法 2014 年1 月~2022 年12 月,采用串联质谱技术对泉州地区643 606 例新生儿进行遗传代谢病筛查。对于多种酰基肉碱升高的可疑阳性样本采用MassARRAY 技术和高通量测序技术诊断。结果 研究期间共有247 例新生儿表现为多种酰基肉碱升高,经过基因诊断确诊19 例GA-II 患儿。此外,1 例新生儿表现为异戊酰基肉碱(isovalerylcarnitine,C5)升高,疑似为异戊酸血症,经过基因诊断证实为GA-II。该研究最终确诊20 例GA-II 患儿,GA-II 在研究人群中的发病率为1∶32 180。新生儿筛查结果表明辛酰基肉碱(C8),癸酰基肉碱(C10)和十二烷酰基肉碱(C12)的浓度明显高于参考范围上限,是筛查GA-II 的关键指标。在GA-II 患儿中发现了10 种不同的电子转移黄素蛋白脱氢酶(electrontransfer flavoprotein dehydrogenase,ETFDH)基因突变,大部分为错义突变。最常见的ETFDH基因突变是c.250G > A (p.A84T),等位基因突变频率达47.5%,其次是c.524G > A (R175H),c. 998A > G (p.Y333C)和c.1657T> C (p.Y553H)。结论 新生儿筛查是早期检出GA-II 患儿的重要途径,但GA-II 患儿可能出现非典型性的生化改变,所有新生儿筛查结果异常的样本应采用高通量测序进行基因诊断。
Abstract:
Objective To investigate the incidence, biochemical manifestations and genetic mutation features of glutaric acidemia type II (GA-II) in newborns in Quanzhou, Fujian province. Methods From January 2014 to December 2022, a total of 643 606 newborns were screened for inherited metabolic diseases by tandem mass spectrometry in the Quanzhou area. Suspected positive newborns with multiple acylcarnitine elevations were diagnosed by the MassARRAY assay and highthroughput sequencing technology. Results A total of 247 newborns showed multiple acylcarnitine elevations during the study period, and 19 newborns were diagnosed with GA-II by genetic diagnosis. In addition, one newborn showed elevated levels of isovalerylcarnitine (C5), and was suspected to be isovaleric acidemia, which was confirmed with GA-II by genetic diagnosis. Twenty newborns were eventually diagnosed with GA-II, and the incidence of GA-II in the study population was 1 ∶ 32 180. Newborn screening results showed the concentrations of octanoylcarnitine (C8), decanoylcarnitine (C10) and dodecanylcarnitine (C12) were higher than the upper limit of the reference range, which were key indicators for screening GA-II. Ten distinct electrontransfer flavoprotein dehydrogenase ETFDH gene mutations were found in patients with GA-II, most of which were missense mutations. The most common ETFDH mutation was C. 250G > A (p.A84T) with an allele frequency of 47.5%, followed by C.524G> A (R175H), C.998A > G (p.Y333C) and C.1657T> C (p.Y553H). Conclusion Newborn screening is an important approach for early detection of GA-II, but patients with GA-II may have atypical biochemical changes, and all newborns with abnormal newborn screening results should be subjected to high-throughput sequencing for genetic diagnosis.

参考文献/References:

[1] MISSAGLIA S, TAVIAN D, ANGELINI C. ETF dehydrogenase advances in molecular genetics and impact on treatment[J]. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56(4): 360-372.
[2] VASILJEVSKI E R, SUMMERS M A, LITTLE D G,et al. Lipid storage myopathies: current treatments and future directions[J]. Progress in Lipid Research, 2018,72: 1-17.
[3] WEN Bing, TANG Shuyao, L? Xiaoqing, et al. Clinical, pathological and genetic features and followup of 110 patients with late-onset MADD: a singlecenter retrospective study[J]. Human Molecular Genetics, 2022, 31(7): 1115-1129.
[4] LUPICA A, OTERI R, VOLTA S, et al. Diagnostic challenges in late onset multiple Acyl-CoA dehydrogenase deficiency: clinical, morphological, and genetic aspects[J]. Frontiers in Neurology, 2022, 13: 815523.
[5] TANG Zhenchu, GAO Shan, HE Miao, et al. Clinical presentations and genetic characteristics of late-onset MADD due to ETFDH mutations in five patients: a case series[J]. Frontiers in Neurology, 2021, 12: 747360.
[6] STARETZ-CHACHAM O, AMAR S, ALMASHANU S, et al. Multiple Acyl-CoA dehydrogenase deficiency with variable presentation due to a homozygous mutation in a Bedouin tribe[J]. Genes(Basel), 2021,12(8): 1140.
[7] 周朵, 叶梅玲, 胡真真, 等. 浙江省新生儿多酰基辅酶A 脱氢酶缺乏症筛查及随访分析[J]. 浙江大学学报(医学版), 2021, 50(4): 454-462. ZHOU Duo, YE Meiling, HU Zhenzhen, et al. Screening of multiple Acyl-CoA dehydrogenase deficiency in newborns and follow-up of patients[J]. Journal of Zhejiang University(Medical Sciences),2021, 50(4): 454-462.
[8] 钟锦平, 彭维林, 傅清流, 等. 福建泉州地区新生儿氨基酸代谢障碍的筛查结果分析[J]. 现代检验医学杂志, 2020, 35(4):41-44, 78. ZHONG jinping, PENG Weilin, FU Qingliu, et al. Retrospective analysis of the neonatal screening results of amino acid disorders in Quanzhou region, Fujian province[J]. Journal of Modern Laboratory Medicine,2020, 35(4):41-44, 78.
[9] LIN Yiming, ZHANG Weifeng, CHEN Zhixu, et al. Newborn screening and molecular features of patients with multiple Acyl-CoA dehydrogenase deficiency in Quanzhou, China[J]. Journal of Pediatric Endocrinology & Metabolism, 2021, 34(5):649-652.
[10] 郑泉志, 傅清流, 彭维林,等. 新生儿异戊酸血症串联质谱法与相关基因突变检测的价值研究[J]. 现代检验医学杂志, 2022, 37(5): 61-64. ZHENG Quanzhi, FU Qingliu, PENG Weilin, et al. Study on the value of tandem mass spectrometry and related gene mutation detection in neonates with isovaleric acidemia[J]. Journal of Modern Laboratory Medicine, 2022, 37(5):61-64.
[11] 钟锦平, 傅清流, 林壹明. 福建省泉州地区新生儿有机酸血症的发病率与疾病谱筛查结果分析[J]. 现代检验医学杂志, 2019, 34(5):52-55. ZHONG Jinping, FU Qingliu, LIN Yiming. Systematic analysis of the incidence and disease spectrum of organic academia newborn screening results in Quanzhou, Fujian Province[J]. Journal of Modern Laboratory Medicine, 2019, 34(5): 52-55.
[12] VAN RIJT W J, FERDINANDUSSE S, GIANNOPOUL OS P, et al. Prediction of disease severity in multiple Acyl-CoA dehydrogenase deficiency: a retrospective and laboratory cohort study[J]. Journal of Inherited Metabolic Disease, 2019, 42(5): 878-889.
[13] VAN RIJT W J, JAGER E A, ALLERSMA D P, et al. Efficacy and safety of D, L-3-hydroxybutyrate (D,L-3-HB) treatment in multiple Acyl-CoA dehydrogenase deficiency[J]. Genetics in Medicine, 2020, 22(5): 908-916.
[14] VAN RIJT W J, HEINER-FOKKEMA M R,DU MARCHIE SARVAAS G J, et al. Favorable outcome after physiologic dose of sodium-D,L-3-hydroxybutyrate in severe MADD[J]. Pediatrics, 2014,134(4): e1224-e1228.
[15] HAN Lianshu, HAN Feng, YE Jun, et al. Spectrum analysis of common inherited metabolic diseases in Chinese patients screened and diagnosed by tandem mass spectrometry[J]. Journal of Clinical Laboratory Analysis, 2015, 29(2): 162-168.
[16] WANG Zhiqiang, CHEN Xuejiao, MURONG Shenxing, et al. Molecular analysis of 51 unrelated pedigrees with late-onset multiple Acyl-CoA dehydrogenation deficiency (MADD) in southern China confirmed the most common ETFDH mutation and high carrier frequency of c.250G>A[J]. Journal of Molecular Medicine (Berlin, Germany), 2011, 89(6): 569-576.
[17] LUO Xiaomei, SUN Yu, XU Feng, et al. A pilot study of expanded newborn screening for 573 genes related to severe inherited disorders in China: results from 1 127 newborns[J]. Annals of Translational Medicine, 2020,8(17): 1058.
[18] HAO Lili, LIANG Lili, GAO Xiaolan, et al. Screening of 1.17 million newborns for inborn errors of metabolism using tandem mass spectrometry in Shanghai, China: a 19-year report[J]. Molecular Genetics and Metabolism, 2024, 141(1): 108098.
[19] MEN Shuai, LIU Shuang, ZHENG Qin, et al. Incidence and genetic variants of inborn errors of metabolism identified through newborn screening: a 7-year study in eastern coastal areas of China[J]. Molecular Genetics & Genomic Medicine, 2023, 11(6): e2152.
[20] ZHU Min, ZHU Xuan, QI Xueliang, et al. Riboflavinresponsive multiple Acyl-CoA dehydrogenation deficiency in 13 cases, and a literature review in mainland Chinese patients[J]. Journal of Human Genetics, 2014, 59(5): 256-261.
[21] LAN M Y, FU M H, LIU Y F, et al. High frequency of ETFDH c. 250G>A mutation in Taiwanese patients with late-onset lipid storage myopathy[J].Clinical Genetics, 2010, 78(6): 565-569.
[22] XI Jianying, WEN Bing, LIN Jie, et al. Clinical features and ETFDH mutation spectrum in a cohort of 90 Chinese patients with late-onset multiple Acyl-CoA dehydrogenase deficiency[J]. Journal of Inherited Metabolic Disease, 2014, 37(3): 399-404.

相似文献/References:

[1]郑泉志,傅清流,彭维林,等.新生儿异戊酸血症串联质谱法与相关基因突变检测的价值研究[J].现代检验医学杂志,2022,37(05):61.[doi:10.3969/j.issn.1671-7414.2022.05.013]
 ZHENG Quan-zhi,FU Qing-liu,PENG Wei-lin,et al.Study on the Value of Tandem Mass Spectrometry and Related Gene Mutation Detection in Neonates with Isovaleric Acidemia[J].Journal of Modern Laboratory Medicine,2022,37(06):61.[doi:10.3969/j.issn.1671-7414.2022.05.013]

备注/Memo

备注/Memo:
基金项目:华侨大学附属妇儿医院院校联合创新项目(2021YX003)。
作者简介:林春妹(1988-),女,本科,主管护师,研究方向:儿科护理学,E-mail: 847830765@qq.com。
通讯作者:林壹明(1987-),男,硕士,主管技师,研究方向:医学分子诊断学,E-mail: linyiming0819@sina.com。
更新日期/Last Update: 2024-11-15