[1]崔小丽,孙 宁,赵 瑞,等.艾地苯醌对癫痫大鼠模型神经元线粒体功能、能量代谢及抗氧化作用机制研究[J].现代检验医学杂志,2023,38(01):44-48+65.[doi:10.3969/j.issn.1671-7414.2023.01.009]
 CUI Xiao-li,SUN Ning,ZHAO Rui,et al.Study on the Mechanism of Idebenone on Mitochondrial Function, Energy Metabolism and Antioxidation in Epileptic Rats Model[J].Journal of Modern Laboratory Medicine,2023,38(01):44-48+65.[doi:10.3969/j.issn.1671-7414.2023.01.009]
点击复制

艾地苯醌对癫痫大鼠模型神经元线粒体功能、能量代谢及抗氧化作用机制研究()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第38卷
期数:
2023年01期
页码:
44-48+65
栏目:
论著
出版日期:
2023-01-15

文章信息/Info

Title:
Study on the Mechanism of Idebenone on Mitochondrial Function, Energy Metabolism and Antioxidation in Epileptic Rats Model
文章编号:
1671-7414(2023)01-044-06
作者:
崔小丽孙 宁赵 瑞马 妮贾瑞华
(陕西省人民医院神经内一科,西安 710068)
Author(s):
CUI Xiao-liSUN Ning ZHAO RuiMA Ni JIA Rui-hua
(Department of Neurology,Shaanxi Provincial People’s Hospital,Xi’an 710068,China)
关键词:
癫痫艾地苯醌氧化应激神经元线粒体
分类号:
R446.19
DOI:
10.3969/j.issn.1671-7414.2023.01.009
文献标志码:
A
摘要:
目的 建立癫痫模型,研究艾地苯醌(Idebenone)的抗癫痫作用机制。方法 30 只SD 大鼠,分为空白对照组(正常大鼠)、建模组和建模+ 艾地苯醌干预组(每组10 只),建模组和干预组均采用经典氯化锂- 匹罗卡品的癫痫诱导方法建立癫痫大鼠模型,艾地苯醌干预30 天后检测大鼠血清、海马体组织中超氧化物歧化酶活性(superoxidedismutase, SOD)和丙二醛(malondialdehyde, MDA)含量的变化,通过Nissl 染色评估艾地苯醌对神经元的保护作用。利用CCK-8 明确艾地苯醌对癫痫细胞模型的最低适用浓度。在无镁诱导的癫痫细胞模型中检测ATP 生成和线粒体膜电位,评价艾地苯醌对神经元线粒体产能功能的影响。结果 建模组大鼠血清SOD 活性为190.25±18.17 U/ml, 较对照组(467.22±23.43 U/ml)降低,建模组海马组织中SOD 活性(107.34±9.33 U/ml)较对照组(298.77±15.32 U/ml)降低,差异均具有统计学意义(t=-22.10,-16.30,均P < 0.05);艾地苯醌干预后大鼠血清和海马组织中SOD 活性有所恢复(384.79±29.21 U/ml,212.08±24.32 U/ml),与建模组相比升高,差异具有统计学意义(t=21.06, 13.62,均P< 0.05)。MDA 的检测结果表明,与对照组相比(7.33±0.87 nmol/L),建模组大鼠血清中MDA 含量增加(14.01±0.93nmol/L),海马组织中MDA 含量(23.47±1.89 nmol/L)也较对照组(11.03±1.28 nmol/L)升高,差异具有统计学意义(t=5.72,9.19,均P < 0.05);艾地苯醌干预后癫痫鼠血清与海马组织中MDA 含量均下降(9.35±0.83 nmol/L,13.77±1.34 nmol/L),与造模组相比差异具有统计学意义(t=-17.68,-22.87,均P < 0.05)。Nissl 染色提示艾地苯醌干预后活性神经元数目增加(1 977±200 个/mm2), 与造模组(1 387±146 个/mm2) 相比差异具有统计学意义(t=3.32,P < 0.050)。细胞学实验表明,艾地苯醌干预能够提高线粒体ATP 产能(0.92±0.14 vs 0.58±0.04),差异具有统计学意义(t=3.75, P=0.000);四甲基罗丹明甲酯(TMRM)荧光强度检测表明艾地苯醌干预后线粒体膜电位显著提高(0.97±0.1vs 0.48±0.06), 差异具有统计学意义(t=6.59, P=0.000)。结论 适量艾地苯醌可能通过保护线粒体功能,降低氧化应激对神经元的损伤发挥抗癫痫作用。
Abstract:
Objective To study the function of idebenone on neurons and the underlying mechanism in epileptic models. Methods 30 SD rats were divided into control group (normal rats), modeling group and modeling + idebenone intervention group (n=10 rats in each group). The classic lithium chloride-pilocarpine induced epilepsy model was established to detect the effects of idebenone on superoxide dismutase(SOD)activity and malondialdehyde(MDA)level in serum and hippocampus after 30 days of intervention. Function of idebenone on neurons was detected by Nissl staining. CCK-8 was used to determine the minimum appropriate concentration of idebenone for epilepsy cell models. ATP production and mitochondrial membrane potential were detected in the Mg-free epilepsy cell mode. Results The serum SOD activity in the modeling group was 190.25±18.17 U/ml, which was lower than that in the control group (467.22±23.43 U/ml), and the SOD activity in the hippocampus of the modeling group(107.34±9.33 U/ml) was lower than that in the control group (298.77±15.32 U/ml). The differences were statistically significant (t=-22.10, -16.30, all P<0.05). SOD activity in serum and hippocampal tissue of rats recovered after intervention of idebenone, (384.79±29.21 U/ml, 212.08±24.32 U/ml), which was higher than that of the modeling group, with statistical difference (t=21.06, 13.62, all P < 0.05). Compared with the control group (7.33±0.87 nmol/L), the content of MDA in serum in the modeling group was increased (14.01±0.93 nmol/L). MDA content in hippocampus (23.47±1.89 nmol/L) was higher than that in control group (11.03±1.28 nmol/L), and the difference was statistically significant (t=5.72, 9.19, all P < 0.05). MDA in serum and hippocampal tissue of epileptic rats decreased (9.35±0.83 nmol/L, 13.77±1.34 nmol/L) after idebenone intervention, and the difference was statistically significant compared with the model group (t=-17.68, -22.87, P<0.05). Nissl staining indicated that the number of active neurons increased after idebenone intervention (1 977±200 cells/mm2), and the difference was statistically significant compared with the model group (1 387±146 cells/mm2) (t=3.32, P<0.050). Idebenone intervention could increase mitochondrial ATP productivity (0.92±0.14 vs 0.58±0.04), and the difference was statistically significant (t=3.75, P=0.000). TMRM fluorescence intensity assay showed that the mitochondrial membrane potential was significantly increased after the intervention of idebenone (0.97±0.1 vs 0.48±0.06), the difference was statistically significant (t=6.59, P=0.000). Conclusion Idebenone can inhibit the oxidative stress induced neuronal damage in epileptic seizures by protecting the capacity of mitochondria and play an antiepileptic role.

参考文献/References:

[1] CARDOSO S . Special issue "mitochondria and brain disease"[J]. Biomedicines, 2022, 10(8):1854.
[2] SEMINOTTI B, BRONDANI M, RIBEIRO R T, et al.Disturbance of mitochondrial dynamics, endoplasmic reticulum-mitochondria crosstalk, redox homeostasis,and inflammatory response in the brain of glutaryl-CoA dehydrogenase-deficient mice: Neuroprotective effects of bezafibrate[J]. Molcular Neurobiology, 2022,59(8):4839-4853.
[3] PA? T, WIESNER R J, PLA-MART?N D. Selective neuron vulnerability in common and rare diseasesmitochondria in the focus[J].Front Mol Biosci,2021,8:676187.
[4] SUTHERLAND T C, SEFIANI A, HORVAT D, et al. Age-dependent decline in neuron growth potential and mitochondria functions in cortical neurons [J].Cells,2021,10(7):1625.
[5] LEROUX M, MILON-HARNOIS G , DELION M ,et al. Added value of high-resolution electrical source imaging of ictal activity in children with structural focal epilepsy[J]. Clinical Neurophysiology, 2022,140:251-253.
[6] LANG J, JESCHKE S, M?LLER R M, et al.Knowledge and attitudes towards epilepsy: A survey of people with epilepsy [J]. Epilepsy Res,2022,184:106964.
[7] CHEN Peng, CHEN Fuchao, ZHOU Benhong. Understanding the role of Glia-Neuron communication in the pathophysiology of epilepsy: A review [J]. J Integr Neurosci,2022,21(4):102.
[8] PA R S O N S A L M , B U C K N O R E M V,CASTROFLORIO E, et al. The interconnected mechanisms of oxidative stress and neuroinflammation in epilepsy [J]. Antioxidants (Basel). 2022,11(1):157.
[9] QIAO Qi, QU Zhenzhen, TIAN Shuang, et al. Ketogenic diet alleviates hippocampal neurodegeneration possibly via ASIC1a and the mitochondria-mediated apoptotic pathway in a rat model of temporal lobe epilepsy[J]. Neuropsychiatr Dis Treat ,2022,18:2181-2198.
[10] KOVAC S, DINKOVA KOSTOVA A T, HERRMANN A M, et al. Metabolic and homeostatic changes in seizures and acquired Epilepsy-Mitochondria, Calcium dynamics and reactive Oxygen species[J]. Int J Mol Sci,2017,18(9):1935.
[11] KUNZ W S, BIMPONG-BUTA N Y, KUDIN A P, et al. The role of mitochondria in epilepsy: implications for neurodegenerative diseases[J].Toxicol Mech Methods,2004,14(1/2):19-23.
[12] UYTTERHOEVEN V , KAEMPF N , VERSTREKEN P . Mitochondria re-set epilepsy[J]. Neuron, 2019,102(5):907-910.
[13] FABISIAK T, PATEL M. Crosstalk between neuroinflammation and oxidative stress in epilepsy [J].Front Cell Dev Biol, 2022, 10:976953.
[14] DIENEL G A, GILLINDER L, MCGONIGAL A ,et al. Potential new roles for glycogen in epilepsy[J].Epilepsia, 2022. DOI: 10.1111/epi.17412.online ahead of Print.
[15] LIU Ling, WANG Jing, LI Haiyu, et al. An intractable epilepsy phenotype of ASNS novel mutation in two patients with asparagine synthetase deficiency[J]. Clin Chim Acta, 2022, 531:331-336.
[16] MOHI-UD-DIN R, MIR R H, MIR P A, et al.Dysfunction of ABC transporters at the surface of BBB: Potential implications in intractable epilepsy and applications of nanotechnology enabled drug delivery[J]. Curr Drug Metab. 2022, 23(9):735-756.
[17] YAMANAKA G, ISHIDA Y, KANOU K, et al.Towards a treatment for neuroinflammation in epilepsy:Interleukin-1 receptor antagonist, anakinra, as a potential treatment in intractable epilepsy[J]. Int J Mol Sci, 2021,22(12):6282.
[18] ANGELOVA P R, ABRAMOV A Y. Rol e of mitochondrial ROS in the brain: from physiology to neurodegeneration[J]. FEBS Lett, 2018,592(5):692-702.
[19] 崔小丽, 蒋锋, 山媛, 等. 艾地苯醌对癫痫大鼠反复自发癫痫发作的影响[J]. 山西医科大学学报, 2019,50(7): 913-916.
CUI Xiaoli, JIANG Feng, SHAN Yuan,et al.Effects of idebenone on the spontaneous recurrent seizures in epileptic rats[J]. J Shanxi Med Univ,2019,50(7): 913-916.
[20] NALCACIOGLU P, KAVUNCU S, TASKIN TURKMENOLU T,et al. The effect of idebenone and corticosteroid treatment on methanol-induced toxic optic nerve and retinal damage in rats: biochemical and histopathological examination[J]. Cutan Ocul Toxicol,2022,41(3):250-256.
[21] AVCI B, G?NAYDIN C, G?VEN? T,et al. Idebenone ameliorates rotenone-induced parkinson's disease in rats through decreasing lipid peroxidation[J]. Neurochem Res, 2021,46(3):513-522.
[22] 姚敏怡, 王明建, 刘雪, 等. 丙戊酸钠对癫痫样放电海马神经元铁死亡的抑制作用及其机制[J]. 精准医学杂志,2022,37(2):175-179.
YAO Minyi, WANG Mingjian, LIU Xue, et al.Inhibitory effect of sodium valproate on ferroptosis in hippocampal neurons with epileptiform Discharge and its mechanism[J]. Precis Med, 2022, 37 (2):175-179.
[23] ZHU Hang, TAN Ying, DU Wenjun, et al. Phosphoglycerate mutase 5 exacerbates cardiac ischemia-reperfusion injury through disrupting mitochondrial quality control[J]. Redox Biol. 2021,38:101777.
[24] ROSENKRANZ S C, SHAPOSHNYOV A A,TR?GER S, et al. Enhancing mitochondrial activity in neurons protects against neurodegeneration in a mouse model of multiple sclerosis[J]. Elife, 2021 , 10: e61798.
[25] THIJS R D, SURGES R, O'BRIEN T J , et al. Epilepsy in adults[J]. Lancet, 2019, 393 (10172): 689-701.
[26] GOLYALA A, KWAN P. Drug development for refractory epilepsy: The past 25 years and beyond[J].Seizure, 2017, 44:147-156.
[27] GAN Jing, QU Yi, LI Jiao, et al. An evaluation of the links between microRNA, autophagy, and epilepsy[J].Rev Neurosci, 2015, 26 (2):225-237.
[28] YAZDANI M, ELGSTOEN K B P. Is oxidative stress an overlooked player in pyridoxine-dependent epilepsy? A focused review[J]. Seizure, 2021, 91:369-373.
[29] YANG Nan, GUAN Qiwen, CHEN Fanghui, et al.Antioxidants targeting mitochondrial oxidative stress:Promising neuroprotectants for epilepsy[J]. Oxid Med Cell Longev, 2020, 2020:6687185.
[30] MAES M, SUPASITTHUMRONG T, LIMOTAI C,et al. Increased oxidative stress toxicity and lowered antioxidant defenses in temporal lobe epilepsy and mesial temporal sclerosis: Associations with psychiatric comorbidities[J]. Mol Neurobiol, 2020, 57 (8):3334-3348.
[31] LU Wei, WU Zhangze, ZHANG Chong, et al.Jujuboside a exhibits an antiepileptogenic effect in the rat model via protection against traumatic epilepsyinduced oxidative stress and inflammatory responses[J].Evid Based Complement Alternat Med, 2022,2022:7792791.
[32] RAMAZI S, FAHANIK-BABAEI J, MOHAMADIZARCH S M, et al. Neuroprotective and anticonvulsant effects of sinomenine in kainate rat model of temporal lobe epilepsy: Involvement of oxidative stress,inflammation and pyroptosis[J]. J Chem Neuroanat ,2020, 108:101800.
[33] PAULETTI A, TERRONE G, SHEKH-AHMAD T, et al. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy[J]. Brain,2019, 142 (7):e39.
[34] LIANG Liping, WALDBAUM S, ROWLEY S, et al. Mitochondrial oxidative stress and epilepsy in SOD2 deficient mice: attenuation by a lipophilic metalloporphyrin[J]. Neurobiol Dis, 2012, 45 (3):1068-1076.
[35] WEN Fang, TAN Zhigang, XIANG Jun. Cu-Zn SOD suppresses epilepsy in pilocarpine-treated rats and alters SCN2A/Nrf2/HO-1 expression[J]. Epileptic Disord,2022, 24 (4):647-656.
[36] LIANG Liping, PATEL M. Mitochondrial oxidative stress and increased seizure susceptibility in Sod2(-/+) mice[J]. Free Radic Biol Med, 2004, 36 (5):542-554.
[37] LORIGADOS PEDRE L, GALLARDO J M,MORALES CHACON L M, et al. Oxidative stress in patients with drug resistant partial complex seizure[J].Behav Sci (Basel), 2018, 8 (6):59.
[38] KALITA J, MISRA U K, SINGH L S, et al. Oxidative stress in status epilepticus: A clinical-radiological correlation[J]. Brain Res, 2019, 1704: 85-93.
[39] ELKOMMOS S, MULA M. Current and future pharmacotherapy options for drug-resistant epilepsy[J].Expert Opin Pharmacother, 2022, 23(18):2023-2034.
[40] MCDONALD T S, NEAL E S, BORGES K. Fructose 1,6-bisphosphate is anticonvulsant and improves oxidative glucose metabolism within the hippocampus and liver in the chronic pilocarpine mouse epilepsy model[J]. Epilepsy Behav, 2021,122:108223.
[41] COBLEY J N, FIORELLO M L, BAILEY D M.13 reasons why the brain is susceptible to oxidative stress[J]. Redox Biol, 2018, 15:490-503.
[42] POPOVA I, MALKOV A, IVANOV A I, et al.Metabolic correction by pyruvate halts acquired epilepsy in multiple rodent models[J]. Neurobiol Dis,2017,106:244-254.
[43] MINENKOVA A, JANSEN E E W, CAMERON J, et al. Is impaired energy production a novel insight into the pathogenesis of pyridoxine-dependent epilepsy due to biallelic variants in ALDH7A1?[J]. PLoS One,2021,16(9):e0257073.
[44] FEI Yaqing, SHI Ruting, SONG Zhi,et al. Metabolic control of epilepsy: A promising therapeutic target for epilepsy[J]. Front Neurol,2020,11:592514.
[45] 王丽丽, 张宁, 赵迎春, 等. 老年急性脑出血并发癫痫患者血清HP,SOD,MDA 水平表达及其与认知功能损害的相关性研究[J]. 现代检验医学杂志, 2020,35(2):108-111.
WANG Lili, ZHANG Ning, ZHAO Yingchun,et al.Study on the correlation between serum haptoglobin,superoxide dismutase and malondialdehyde in elderly patients with epilepsy after acute cerebral hemorrhage and their correlation with cognitive impairment[J].J Mod Lab Med,2020,35(2):108-111.
[46] QIAN Xudong, XU Qianqian, LI Guoyun, et al.Therapeutic effect of idebenone on rats with vascular dementia via the microRNA-216a/RSK2/NF-κB axis[J]. Neuropsychiatr Dis Treat. 2021,17:533-543.
[47] LIN Pengfei, LIU Junling, REN Ming, et al. Idebenone protects against oxidized low density lipoprotein induced mitochondrial dysfunction in vascular endothelial cells via GSK3β/β-catenin signalling pathways[J]. Biochem Biophys Res Commun,2015,465(3):548-555.

相似文献/References:

[1]张玲如,周美宁,肖 珊.CaBP4基因突变与儿童癫痫的相关性研究[J].现代检验医学杂志,2019,34(06):28.[doi:10.3969 / j.issn.1671-7414.2019.06.007]
 ZHANG Ling-ru,ZHOU Mei-ning,XIAO Shan.Study the Relationship between CaBP4 Gene Mutation and Epilepsy in Children[J].Journal of Modern Laboratory Medicine,2019,34(01):28.[doi:10.3969 / j.issn.1671-7414.2019.06.007]
[2]王丽丽,张 宁,赵迎春,等.老年急性脑出血并发癫痫患者血清HP,SOD,MDA 水平表达及其与认知功能损害的相关性研究[J].现代检验医学杂志,2020,35(02):108.[doi:10.3969 / j.issn.1671-7414.2020.02.030]
 WANG Li-li,ZHANG Ning,ZHAO Ying-chun,et al.Study on the Correlation between Serum Haptoglobin, Superoxide Dismutaseand Malondialdehyde in Elderly Patients with Epilepsy after AcuteCerebral Hemorrhage and Their Correlation with Cognitive Impairment[J].Journal of Modern Laboratory Medicine,2020,35(01):108.[doi:10.3969 / j.issn.1671-7414.2020.02.030]
[3]漆 明,王 宇,李 春,等.癫痫患者血浆Glu,Asp,Gly和GABA水平检测与智力缺损程度的相关性研究[J].现代检验医学杂志,2021,36(02):101.[doi:doi:10.3969/j.issn.1671-7414.2021.02.024]
 QI Ming,WANG Yu,LI Chun,et al.Study on the Correlation between the Levels of Plasma Glu, Asp, Gly, GABA and the Degree of Mental Retardation in Patients with Epilepsy[J].Journal of Modern Laboratory Medicine,2021,36(01):101.[doi:doi:10.3969/j.issn.1671-7414.2021.02.024]
[4]郭 娜a,马 英a,王琳莹a,等.脑卒中患者血清 Hcy及 NSE水平与癫痫发作的相关性研究[J].现代检验医学杂志,2022,37(01):177.[doi:10.3969/j.issn.1671-7414.2022.01.036]
 GUO Naa,MA Yinga,WANG Lin-yinga,et al.Correlation between Serum Hcy, NSE Levels and Epileptic Seizures in Patients with Stroke[J].Journal of Modern Laboratory Medicine,2022,37(01):177.[doi:10.3969/j.issn.1671-7414.2022.01.036]

备注/Memo

备注/Memo:
基金项目:陕西省自然科学基础研究计划(2021JQ-903):艾地苯醌对癫痫持续状态大鼠学习记忆的影响及其机制的研究。
作者简介:崔小丽(1983-),女,硕士,副主任医师,研究方向:癫痫和神经重症,E-mail:lili6416669@126.com。
通讯作者:贾瑞华(1986-),男,博士,主治医师,研究方向:癫痫,E-mail: jiarh8@163.com。
更新日期/Last Update: 2023-01-15