上皮性卵巢癌组织中 miR-506-3p 及 miR-532-5p 的表达与 临床病理特征及预后的相关研究

林燕玲, 王 瑛, 张 敏, 康 灵, 邢维珍, 黎先萍(上海儿童医学中心三亚市妇女儿童医院, 海南三亚 572000)

摘 要: 目的 探讨 miR-506-3p 及 miR-532-5p 在上皮性卵巢癌(epithelial ovarian cancer,EOC)组织中的表达及其对预后预测的意义。方法 选取 2017 年 1 月~ 2019 年 12 月三亚市妇女儿童医院和三亚中心医院收治的 118 例 EOC 患者。检测 EOC 组织及正常组织中 miR-506-3p 及 miR-532-5p 表达水平。应用单因素及多因素 COX 回归模型分析 EOC 患者预后不良的危险因素。结果 EOC 组织 miR-506-3p(0.31±0.05)及 miR-532-5p(0.24±0.03)表达水平低于正常组织(1.16±0.42,1.48±0.51),差异有统计学意义(t=13.582,16.217,均 P<0.001)。Kaplan-Meier 生存分析显示,miR-506-3p 及 miR-532-5p 低表达与 EOC 患者生存期短有关(P<0.001)。多因素分析显示,淋巴结转移 [HR(95%CI)=1.840(1.137~4.105)],腹膜转移 [HR(95%CI)=2.974(2.106~6.113)],miR-506-3p <0.45[HR(95%CI)=1.902(1.217~4.533)]及 miR-532-5p <0.32[HR(95%CI)=2.506(1.582~4.905)] 是影响 EOC 患者更存期较短,对 EOC 患者预后预测具有较好的价值。

关键词:上皮性卵巢癌;微小核糖核酸 -506-3p;微小核糖核酸 -532-5p 中图分类号: R737.31; R730.43 文献标识码: A 文章编号:1671-7414(2022)03-083-04 **doi:**10.3969/**j.issn.**1671-7414.2022.03.017

Correlation between the Expression of miR-506-3p and miR-532-5p and Clinicopathological Features and Prognosis in Epithelial Ovarian Cancer

LIN Yan-ling, WANG Ying, ZHANG Min, KANG Ling, XING Wei-zhen, LI Xian-ping

(Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Hainan Sanya 572000, China)

Abstract: Objective To investigate the expression of miR-506-3p and miR-532-5p in epithelial ovarian cancer (EOC) and its prognostic significance. **Methods** The 118 patients with EOC admitted to Sanya Woman and Children's Hospital and Sanya Central Hospital from January 2017 to December 2019 were selected. The expression levels of miR-506-3p and miR-532-5p in EOC and normal tissues were detected. Univariate and multivariate COX regression models were used to analyze the risk factors of poor prognosis in EOC patients. **Results** The expression level of miR-506-3p (0.31 \pm 0.05) and miR-532-5p (0.24 \pm 0.03) in EOC were lower than that in normal tissues(1.16 \pm 0.42, 1.48 \pm 0.51), the differences were statistically significant (t=13.582, 16.217, all P<0.001). Kaplan-Meier survival analysis showed that low expression of miR-506-3p and miR-532-5p were associated with short survival of EOC patients (P<0.001). Multivariate Cox regression analysis showed that lymph node metastasis[HR (95%CI) =1.840 (1.137 ~ 4.105)], peritoneal metastasis[HR (95%CI) =2.974 (2.106 ~ 6.113)], miR-506-3p<0.45 [HR (95%CI) =1.902 (1.217 ~ 4.533)] and miR-532-5p<0.32[HR (95%CI) =2.506 (1.582 ~ 4.905)] were independent risk factors for poor prognosis of EOC patients (all P<0.05). **Conclusion** miR-506-3p and miR-532-5p were significantly down-regulated in EOC tissues, and the survival time of EOC patients with low expression of miR-506-3p was shorter, which had a good value for predicting the prognosis of EOC patients.

Keywords: epithelial ovarian cancer; miR-506-3p; miR-532-5p

上皮性卵巢癌 (epithelial ovarian cancer, EOC) 是常见的影响女性生命健康的恶性肿瘤,晚期 EOC 的生存率较低 [1-2]。微小核糖核酸 (microRNA, miRNA)是一类小分子RNA,参与EOC的发生发展, 有望作为 EOC 的诊断标志物 [3-4]。研究发现, EOC 存在 miR-506-3p 及 miR-532-5p 的异常表达,其可能为 EOC 的诊断、治疗和预后提供重要的帮助 $^{[5-6]}$ 。本研究通过检测 miR-506-3p 及 miR-532-5p 在 EOC 组织中的表达情况,分析其预测 EOC 预后的价值,为 EOC 的治疗提供指导。

基金项目:海南省临床医学中心建设资助。

作者简介: 林燕玲(1984-), 女, 本科, 主治医师, 主要从事临床妇产科疾病研究, E-mail: lyl 841220@163.com。

1 材料与方法

1.1 研究对象 选取 2017 年 1 月 ~ 2019 年 12 月 三亚市妇女儿童医院和三亚中心医院收治的 118 例 EOC 患者,年龄 37 ~ 74(54.28 ± 10.35) 岁。纳入标准:①符合国际妇产科联合会 (FIGO) 分类标准,经病理确诊;②符合肿瘤细胞减灭手术指征者。排除标准:①术前已接受其他治疗者;②并发其他恶性肿瘤。术后每 3 个月对 EOC 患者随访 1 次,随访截止时间为 2020 年 12 月 31 日,记录患者的总生存时间(overall survival,OS)和无进展生存时间(progression-free survival,PFS)。本研究符合医学伦理,患者知情同意。

1.2 仪器与试剂 SLAN-96S 荧光定量 PCR 仪(上海宏石医疗科技公司), PCR 所有相关试剂盒(上海联迈生物工程有限公司), 离心机(上海电器有限公司)产品。

1.3 方法 采集 EOC 组织及其相应正常组织,Trizol 法提取总 RNA,使用荧光定量 PCR 仪检测。反应体系为 $20\,\mu$ l: $1\,\mu$ l 引物及探针 Mix($20\,\times$), $10\,\mu$ l TaqMan 通用混合物溶液($2\,\times$), $1.33\,\mu$ l 反向转录脱氧核糖核酸, $7.67\,\mu$ l 双蒸馏水。扩增条件为: $95\,^{\circ}$ 预变性 $10\,$ min, $95\,^{\circ}$ 变性 $15\,$ s, $60\,^{\circ}$ 复性 $60\,$ s。采用 $2^{-\Delta\Delta\,^{cr}}$ 法计算 miR-506-3p 及 miR-532-

5p 水平。

1.4 统计学分析 采用 SPSS 20.0 软件。计量资料 以均数 ± 标准差 (\bar{x} ±s) 表示,组间比较采用配对 t 检验;计数资料比较采用 χ^2 检验。采用 COX 回归分析影响 EOC 患者预后的因素。P < 0.05 为差异有统计学意义。

2 结果

2.1 不同组织 miR-506-3p 及 miR-532-5p 水平比较 EOC 组 织 中 miR-506-3p 的 水 平 为 0.31 ± 0.05 , miR-532-5p 的水平为 0.24 ± 0.03 , 均较癌旁正常组织(1.16 ± 0.42 , 1.48 ± 0.51)明显减低,差异有统计学意义(t=13.582,16.217,均 P < 0.001)。
2.2 miR-506-3p 及 miR-532-5p 水平与临床特征关系 见表 1。以 miR-506-3p 的中位数 0.45 和 miR-532-5p 的 中位数 0.32 为临界值,分为 miR-506-3p 高表达组(miR-506-3p < 0.45, n=57)和 miR-506-3p 低表达组(miR-532-5p 高表达组(miR-532-5p < 0.32, n=55)和 miR-532-5p 低表达组(miR-532-5p 低表达组的iR-532-5p 低表达组的iR-532-5p 低表达组的iR-532-5p 低表达组的iR-532-5p 低表达组的iR-532-5p 低表达组思者的

n=55)和 miR-532-5p 低表达组(miR-532-5p < 0.32, n=63)。miR-506-3p 及 miR-532-5p 低表达组患者的 Ⅲ ~ IV 期、低分化、淋巴转移及腹膜转移发生率明显高于 miR-506-3p 及 miR-532-5p 高表达组,差异均有统计学意义(均 P < 0.05)。

表 1 miR-506-3p 及 miR-532-5p 水平与临床特征关系 [n(%)]

-pc 1			1 2 0 0 3 P 🗻 IIII	16 332 3P 77 1	J IMPI	10 III.) ()	1 [n(/o)]			
类别		n	miR-506-3p		2 /=	n 店	miR-532-5p		.2 店	D店
矢 加			低表达 (n=61)	高表达 (n=57)	χ ² 值	P值	低表达 (n=63)	高表达 (n=55)	χ ² 值	P值
年龄(岁)	< 60	78	39 (50.0)	39 (50.0)	0.265	0.607	38 (48.7)	40 (51.3)	2.010	0.155
	≥ 60	40	22 (55.0)	18 (45.0)	0.203	0.607	25 (62.5)	15 (37.5)	2.018	0.155
绝经	有	51	28 (54.9)	23 (45.1)	0.370 0.543	0.542	31 (60.8)	20 (39.2)	1.974	0.160
	无	67	33 (49.3)	34 (50.7)		0.343	32 (47.8)	35 (52.2)		
组织学类型	浆液性	79	42 (53.2)	37 (46.8)	0.207	0.649	43 (54.4)	36 (45.6)	0.104	0.747
	黏液性	39	19 (48.7)	20 (51.3)			20 (51.3)	19 (48.7)		
临床分期	I~Ⅱ期	36	11 (30.6)	25 (69.4)	9.271	0.002	10 (27.8)	26 (72.2)	13.656	0.000
	Ⅲ~Ⅳ期	82	50 (61.0)	32 (39.0)			53 (64.6)	29 (35.4)		
分化程度	中高分化	66	28 (42.4)	38 (57.6)	5.155	0.023	27 (40.9)	39 (59.1)	9.375	0.002
	低分化	52	33 (63.5)	19 (36.5)			36 (69.2)	16 (30.8)		
肿瘤最大直径(cm)	< 5	56	27 (48.2)	29 (51.8)	0.517	0.472	28 (50.0)	28 (50.0)	0.492	0.483
	≥ 5	62	34 (54.8)	28 (45.2)			35 (56.5)	27 (43.5)		
淋巴结转移	有	42	29 (69.0)	13 (31.0)	7.863	0.005	33 (78.6)	9 (21.4)	16.617	0.000
	无	76	32 (42.1)	44 (57.9)			30 (39.5)	46 (60.5)		
腹膜转移	有	53	38 (71.7)	15 (28.3)	15.417	0.000	41 (77.4)	12 (22.6)	22.212	0.000
	无	65	23 (35.4)	42 (64.6)			22 (33.8)	43 (66.2)		

2.3 EOC 患者 预 后 与 miR-506-3p 及 miR-532-5p 表达的关系 见图 1 和图 2。EOC 患者随访时间为 9 ~ 60 个月,中位时间 30.4 个月。Kaplan-Meier 生存分析显示,miR-506-3p 低表达组患者 OS 明显

低于 miR-506-3p 高表达组(χ^2 =10.758, P < 0.001); miR-506-3p 低表达组患者 PFS 明显低于 miR-506-3p 高表达组(χ^2 =9.658, P < 0.001), miR-532-5p 低表达组患者 OS 明显低于 miR-532-5p 高表达组

(χ^2 =12.660, P < 0.001); miR-532-5p 低表达组 患者 PFS 明显低于 miR-532-5p 高表达组(χ^2 =10.273, $P < 0.001)_{\circ}$

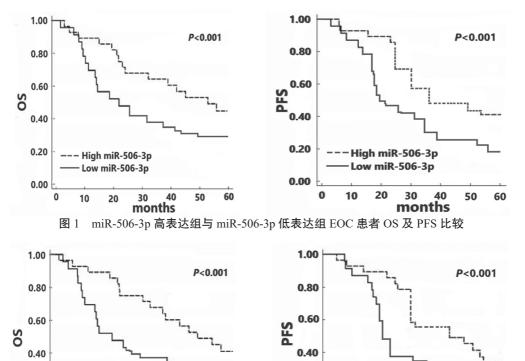


图 2 miR-532-5p 高表达组与 miR-532-5p 低表达组 EOC 患者 OS 及 PFS 比较

0.20

0.00

2.4 EOC 患者预后影响因素分析 见表 2。COX 回归分析模型显示,淋巴结转移 [HR (95%CI) =1.840 (1.137 ~ 4.105)],腹膜转移 [HR (95%CI) =2.974 (2.106 ~ 6.113)], miR-506-3p < 0.45[HR

- - High miR-532-5p

- Low miR-532-5p

30

months

40

0.20

0.00

(95%CI) =1.902 (1.217 ~ 4.533)] 及 miR-532-5p < 0.32[HR (95%CI) =2.506 (1.582 ~ 4.905)] 是影响 EOC 患者预后不良的独立危险因素 (P<0.05)。

months

40

60

-High miR-532-5p -Low miR-532-5p

10

表 2 EOC 患者预后影响因素分析

	· 보 미		单因素		多因素				
	类 别	HR 值	95%CI	P 值	HR 值	95%CI	P值		
临床分期	(Ⅲ~Ⅳ期/Ⅰ~Ⅱ)	1.873	1.270 ~ 3.005	0.015	1.195	0.884 ~ 2.106	0.081		
分化程度	(低分化/中高分化)	1.427	1.108 ~ 2.537	0.032	0.896	0.703 ~ 1.362	0.217		
淋巴结转移	(有/无)	2.593	1.781 ~ 5.105	0.008	1.840	1.137 ~ 4.105	0.016		
腹膜转移	(有/无)	3.972	2.983 ~ 7.184	0.000	2.974	2.106 ~ 6.113	0.000		
miR-506-3p	(<0.45/≥ 0.45)	2.374	1.428 ~ 4.706	0.000	1.902	1.217 ~ 4.533	0.005		
miR-532-5p	(<0.32/ ≥ 0.32)	2.906	1.975 ~ 5.873	0.000	2.506	1.582 ~ 4.905	0.000		

3 讨论

上皮卵巢癌(EOC)是一种好发于女性的恶性肿瘤,其发生发展与基因异常表达高度关联,而miRNA的表达在EOC中发挥了极为关键的作用。早期对EOC患者进行预后预测有助于提高患者的生存率。miRNA作为一类非编码RNA,参与调控EOC的发病机制,有望作为EOC诊断及预后评估

的重要指标^[8-9]。有研究发现,miRNA 在 EOC 中低表达,其过度表达降低了 EOC 细胞活力并抑制其迁移、侵袭和增殖,在 EOC 转移和进展中起着关键作用,为 EOC 的临床治疗提供潜在的指导^[10]。

本研究 miR-506-3p 及 miR-532-5p 在 EOC 组织 较正常组织明显降低,提示其低表达可能参与 EOC 的发生。既往研究显示, miR-506-3p 在 EOC 组织

中存在低表达,miR-506-3p 可能是一个抑癌基因,对 EOC 细胞增殖、细胞周期进程和凋亡具有抑制作用,将来可能为 EOC 的治疗提供新的方向 [11]。 另有研究发现,miR-532-5p 在 EOC 中的表达降低,其降低与细胞增殖、侵袭及转移有关,是 EOC 发病中较为关键的作用基因 [12]。本研究中 miR-506-3p 及 miR-532-5p 表达降低与 EOC 临床分期大,分化程度低,有淋巴结转移及腹膜转移有关,提示其低表达可能促进疾病的病情进展。SAMUEL 等 [13] 研究认为,EOC 组织中 miRNA 的表达较正常组织减低,其低表达与疾病进展相关,可为 EOC 的诊断及预后指导提供较大的帮助。

本研究通过分析 EOC 患者生存情况与 miR-506-3p 及 miR-532-5p 表达的关系, 发现 miR-506-3p 及 miR-532-5p 低表达与 EOC 患者生存期短有 关,提示检测 miR-506-3p 及 miR-532-5p 水平有助 于指导 EOC 的预后情况。本研究多因素分析显示, EOC患者预后不良的独立危险因素为淋巴结转移、 腹膜转移、miR-506-3p < 0.45 及 miR-532-5p < 0.32, 进一步说明了 miR-506-3p 及 miR-532-5p 低表达 与 EOC 预后不良密切相关。XIA 等 [14] 研究指出, EOC 组织 miR-506-3p 表达下调, 其高表达可抑制 EOC 的进展, 检测 miR-506-3p 水平可为 EOC 的治 疗提供重要的指导。WEI等[15]研究认为, miR-532-5p 的低表达与 EOC 的临床分期和转移高度相关, 参与促进 EOC 组织细胞的增殖、集落形成和侵袭, 是 EOC 患者预后不良的独立危险因素, 有望作为 EOC 治疗的潜在靶点及新的预后标志物。另有研究 表明, EOC 的发生、进展与 miRNA 的异常表达有关, miRNA 作为预测 EOC 预后的标志物具有很好的应 用前景[16]。

综上认为, miR-506-3p及 miR-532-5p在 EOC 组织表达减低,其低表达与EOC患者预后不良有关,对 EOC 患者预后预测具有一定的指导意义。但本研究随访时间较短,其结果可能存在一定的偏差,尚需更多的前瞻性研究共同来验证。

参考文献:

- [1] WEBB P M, JORDAN S J. Epidemiology of epithelial ovarian cancer[J]. Best Practice & Research Clinical Obstetrics & Gynaecology, 2017, 41(5): 3-14.
- [2] PISZCZAN S, DESALEGN D, PETROS H, et al. Clinical characteristics and survival of patients with malignant ovarian tumors in Addis Ababa, Ethiopia[J]. The Oncologist, 2019, 24(6): e303-e311.
- [3] PARIZADEH S M, JAFARZADEH-ESFEHANI R, GHANDEHARI M, et al. Circulating and tissue microRNAs as biomarkers for ovarian cancer prognosis[J]. Current Drug Targets, 2019, 20(14): 1447-1460.
- [4] DEB B, UDDIN A, CHAKRABORTY S. MiRNAs

- and ovarian cancer: an overview[J]. Journal of Cellular Physiology, 2018, 233(5): 3846-3854.
- [5] NAM E J, KIM S, LEE T S, et al. Primary and recurrent ovarian high-grade serous carcinomas display similar microRNA expression patterns relative to those of normal ovarian tissue[J]. Oncotarget, 2016, 7(43): 70524-70534.
- [6] ZHOU Yuanyuan, ZHENG Xia, LU Jiaojiao, et al. Ginsenoside 20(S)-Rg3 inhibits the warburg effect via modulating DNMT3A/ MiR-532-3p/HK2 pathway in ovarian cancer cells[J]. Cellular Physiology and Biochemistry, 2018, 45(6): 2548-2559.
- [7] JAVADI S, GANESHAN D M, QAYYUM A, et al. Ovarian cancer, the revised FIGO staging system, and the role of imaging[J]. American Journal of Roentgenology, 2016, 206(6): 1351-1360.
- [8] OLIVEIRA D N P, CARLSEN A L, HEEGAARD N H H, et al. Diagnostic plasma miRNA-profiles for ovarian cancer in patients with pelvic mass[J]. PLoS One, 2019, 14(11): e0225249.
- [9] ZÁVESKÝ L, JANDÁKOVÁ E, WEINBERGER V, et al. Ovarian cancer: Differentially expressed microRNAs in tumor tissue and cell-free ascitic fluid as potential novel biomarkers[J]. Cancer Investigation, 2019, 37(9): 440-452.
- [10] ZHAO Laigang, WANG Jiao, LI Jin, et al. MiR-744-5p inhibits cellular proliferation and invasion via targeting ARF1 in epithelial ovarian cancer[J]. The Kaohsiung Journal of Medical Sciences, 2020, 36(10): 799-807.
- [11] WANG Yuan, LEI Xia, GAO Chengying, et al. MiR-506-3p suppresses the proliferation of ovarian cancer cells by negatively regulating the expression of MTMR6[J]. Journal of Biosciences, 2019, 44(6): 126.
- [12] WANG Fan, CHANG J T H, KAO C J, et al. High expression of miR-532-5p, a tumor suppressor, leads to better prognosis in ovarian cancer both in vivo and in vitro[J]. Molecular Cancer Therapeutics, 2016, 15(5): 1123-1131.
- [13] SAMUEL P, CARTER D R. The diagnostic and prognostic potential of microRNAs in epithelial ovarian carcinoma[J]. Molecular Diagnosis & Therapy, 2017, 21(1): 59-73.
- [14] XIA X Y, YU Y J, YE F, et al. MicroRNA-506-3p inhibits proliferation and promotes apoptosis in ovarian cancer cell via targeting SIRT1/AKT/FOXO3a signaling pathway[J]. Neoplasma, 2020, 67(2): 344-353.
- [15] WEI H, TANG Q L, ZHANG K, et al. MiR-532-5p is a prognostic marker and suppresses cells proliferation and invasion by targeting TWIST1 in epithelial ovarian cancer[J]. European Review for Medical and Pharmacological Sciences, 2018, 22(18): 5842-5850.
- [16] ZHANG Ruitao, SHI Huirong, REN Fang, et al. Down-regulation of miR-338-3p and Up-regulation of MACC1 indicated poor prognosis of epithelial ovarian cancer patients[J]. Journal of Cancer, 2019, 10(6): 1385-1392.

收稿日期: 2021-03-16 修回日期: 2021-12-04