[1]孙文泽,李守帅.LncRNA LINC01137 通过诱导CD8+T 细胞耗竭促进非小细胞肺癌进展的机制研究[J].现代检验医学杂志,2024,39(02):1-6+134.[doi:10.3969/j.issn.1671-7414.2024.02.001]
 SUN Wenze,LI Shoushuai.Mechanism Study of LncRNA LINC01137 Promoting the Progression of Nonsmall Cell Lung Cancer by Inducing CD8+T Cell Exhaustion[J].Journal of Modern Laboratory Medicine,2024,39(02):1-6+134.[doi:10.3969/j.issn.1671-7414.2024.02.001]
点击复制

LncRNA LINC01137 通过诱导CD8+T 细胞耗竭促进非小细胞肺癌进展的机制研究()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第39卷
期数:
2024年02期
页码:
1-6+134
栏目:
论著
出版日期:
2024-03-31

文章信息/Info

Title:
Mechanism Study of LncRNA LINC01137 Promoting the Progression of Nonsmall Cell Lung Cancer by Inducing CD8+T Cell Exhaustion
文章编号:
1671-7414(2024)02-001-07
作者:
孙文泽1李守帅2
(1. 西安交通大学第一附属医院放疗科,西安 710061;2 . 西安市中心医院普外科,西安 710003)
Author(s):
SUN Wenze1 LI Shoushuai2
(1. Department of Radiation Oncology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; 2. Department of General Surgery, Xi’an Central Hospital, Xi’an 710003, China)
关键词:
非小细胞肺癌LINC01137外泌体微小核糖核酸-22-3pCD8+T 细胞
分类号:
R734.2;R730.43
DOI:
10.3969/j.issn.1671-7414.2024.02.001
文献标志码:
A
摘要:
目的 研究长链非编码RNA(long non-coding RNA, LncRNA) LINC01137 在非小细胞肺癌(nonsmallcell lung cancer,NSCLC)免疫逃逸中的生物学功能及其潜在的调节机制。方法 采集24 例健康志愿者和24 例NSCLC 患者血液样本,并收集NSCLC 肿瘤组织和癌旁组织检测LINC01137 水平。利用Starbase 数据库预测LINC01137 与miR-22-3p 的结合位点,荧光素酶报告基因分析进行验证。采用A549 细胞来源的外泌体和/ 或sh-LINC01137 干扰序列转染A549 细胞,检测细胞增殖和侵袭能力;收集转染后的细胞上清液培养CD8+T 细胞,检测CD8+T 细胞耗竭标志物干扰素-γ(interfereron-γ,IFN-γ)、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、颗粒霉素B(granzyme B)和白细胞介素-2(interleukin-2,IL-2)水平,以及PD-1+Tim3+CD8+T 细胞百分比。采用外泌体和/ 或miR-22-3p 模拟物(miR-22-3p mimic)转染CD8+T 细胞,检测PD-1 蛋白水平。结果 与癌旁组织相比,NSCLC 肿瘤组织中LINC01137 表达(3.357 ± 0.548 vs 1.011 ± 0.371)明显升高;与健康志愿者相比,NSCLC 患者外周血LINC01137 表达(3.216 ± 0.342 vs 1.007 ± 0.313)亦明显升高,差异具有统计学意义(t=-17.367,-17.147, 均P<0.001)。肿瘤组织LINC01137 表达与外周血中LINC01137 表达呈正相关(r=0.755,P<0.05)。在A549 细胞来源的外泌体中LINC01137 显著富集。与Exo+sh-NC 组相比,Exo+sh-LINC01137 组细胞活力(65.852% ± 4.715% vs 100.153% ± 11.934%)及细胞侵袭(21.464% ± 3.481% vs 43.126% ± 1.447%)能力显著降低,差异具有统计学意义(t=4.630,9.953,均P<0.01)。NSCLC 患者外周血中LINC01137 表达和CD8+T 细胞百分比呈负相关(r=-0.520,P < 0.05)。与Exo+sh-NC 组相比,Exo+sh-LINC01137 组IFN-γ(3 865.314 ± 543.852 pg/ml vs 1 786.971 ± 105.982 pg/ml),TNF-α(4 631.930 ± 510.715pg/ml vs 1 973.242 ± 379.623pg/ml),Granzyme B(3 876.496 ± 312.438pg/ml vs 1 879.439 ± 287.584pg/ml)和IL-2 mRNA 水平(3.286 ± 0.437 vs 1.015 ± 0.314)升高,PD-1+Tim3+CD8+T 细胞百分比(7.680% ± 2.185% vs 18.952% ± 3.216%)降低,差异具有统计学意义(t=-6.497,-7.237,-8.146,-7.310,5.021, 均P<0.01)。miR-22-3p 是LINC01137 的靶基因。与Exo+NC mimic 组相比,Exo+miR-22-3p 组PD-1 蛋白水平(0.384 ± 0.087 vs 1.003 ± 0.147) 显著降低, 差异有统计学意义(t=6.277,P<0.01)。结论 NSCLC 患者肿瘤组织及外周血中LINC01137 表达显著上调;NSCLC 细胞来源的外泌体中LINC01137 通过靶向CD8+T 细胞中miR-22-3p 并抑制其表达,诱导CD8+T 细胞耗竭,促进NSCLC 细胞免疫逃逸。
Abstract:
Objective To investigate the biological function of long non-coding RNA(LncRNA) LINC01137 in immune escape of non-small cell lung cancer (NSCLC) cells and its potential regulatory mechanisms. Methods The blood samples of 24 healthy volunteers and 24 NSCLC patients were collected. The tumor tissues and paracancerous tissues of 24 NSCLC patients were collected, and the levels of LINC01137 were detected. The binding sites of LINC01137 and miR-22-3p were predicted by Starbase database and verified by the luciferase reporter gene analysis. A549 cells were transfected with exosomes derived from A549 cells and/or sh-LINC01137 interference sequence to detect cell proliferation and invasion. The supernatant of A549 cells were collected to culture CD8+T cells, and the levels of CD8+T cell exhaustion markers, including interfereron-γ (IFN-γ), tumor necrosis factor-α (TNF-α), granzyme B and interleukin-2 (IL-2), and the percentage of PD- 1+Tim3+CD8+T cells were detected. CD8+T cells were transfected with exosomes and/or miR-22-3p mimics to detect the protein level of PD-1. Results The expression of LINC01137 in tumor tissues of patients with NSCLC was increased compared with paracancerous tissues (3.357 ± 0.548 vs 1.011 ± 0.371), while the expression of LINC01137 in peripheral blood of patients with NSCLC was increased compared with healthy volunteers (3.216 ± 0.342 vs 1.007 ± 0.313), with statistically significant differences (t=-17.367, -17.147, all P<0.001). There was a positive correlation between the expression of LINC01137 in tumor tissue and peripheral blood (r=0.755, P<0.05). LINC01137 was significantly enriched in exosomes derived from A549 cells. Compared with Exo+sh-NC group, the cell viability (65.85% ± 4.71% vs 100.15% ± 11.93%) and cell invasion (21.46% ± 3.48% vs 43.12% ± 1.44%) in Exo+sh-LINC01137 group were decreased, and the differences were statistically significant (t=4.630, 9.953, all P<0.01). The expression of LINC01137 in peripheral blood of NSCLC patients was negatively correlated with the percentage of CD8+T cells (r=-0.520, P<0.05). Compared with Exo+sh-NC group, the IFN-γ (3 865.31 ± 543.85 pg/ ml vs 1 786 ± 105.98 pg/ml), TNF-α (4 631.93 ± 510.71 pg/ml vs 1 973.24 ± 379.62 pg/ml), Granzyme B (3 876.49 ± 312.43 pg/ml vs 1 879.43 ± 287.58 pg/ml), and IL-2 mRNA levels (3.286 ± 0.437 vs 1.015 ± 0.314) were increased, and the percentage of PD-1+Tim3+CD8+T cells (7.68% ± 2.18% vs 18.95% ± 3.21%) was decreased in Exo+sh-LINC01137 group, with statistical significances (t=-6.497, -7.237, -8.146, -7.310, 5.021, all P<0.01). Our results showed that miR-22-3p was the target gene of LINC01137. Compared with Exo+NC mimic group, the level of PD-1 protein in Exo+miR-22-3p group (0.384 ± 0.087 vs 1.003 ± 0.147) was significantly decreased, and the difference was statistically significant (t=6.277, P<0.01). Conclusion The expression of LINC01137 was significantly up-regulated in tumor tissues and plasma of NSCLC patients. Exosomes LINC01137 derived NSCLC cell induces CD8+T cell exhaustion by targeting miR-22-3p and inhibiting its expression, and thus promoting NSCLC cell immune escape.

参考文献/References:

[1] ALDUAIS Y, ZHANG Haijun, FAN Fan, et al. Nonsmall cell lung cancer (NSCLC): A review of risk factors, diagnosis, and treatment[J]. Medicine, 2023,102(8): e32899.
[2] REMON J, HENDRIKS L E L, MOUNTZIOS G, et al. MET alterations in NSCLC-current perspectives and future challenges[J]. Journal of Thoracic Oncology,2023, 18(4): 419-435.
[3] TSAMIS I, GOMATOU G, CHACHALI S P, et al. BRAF/MEK inhibition in NSCLC: mechanisms of resistance and how to overcome it[J]. Clinical & Translational Oncology, 2023, 25(1): 10-20.
[4] HU Chengyu. LncRNA DSCAM-AS1: A pivotal therapeutic target in cancer[J]. Mini Reviews in Medicinal Chemistry, 2023, 23(5): 530-536.
[5] 周立远, 叶玉祥, 林琳, 等.LncRNA CCAT1 调节miR-155 表达增强CD8+T 细胞对食管癌抗肿瘤活性的机制研究[J].现代检验医学杂志, 2023, 38(3):79-85. ZHOU Liyuan, YE Yuxiang, LIN Lin, et al. Mechanism of LncRNA CCAT1 regulating miR-155 expression and enhancing anti-tumor activity of CD8+T cells against esophageal cancer[J]. Journal of Modern Laboratory Medicine, 2023, 38(3): 79-85.
[6] DU Yong, YANG Haiyan, LI Yue, et al. Long noncoding RNA LINC01137 contributes to oral squamous cell carcinoma development and is negatively regulated by miR-22-3p[J]. Cellular Oncology (Dordrecht), 2021,44(3): 595-609.
[7] YAO Yuanshan, YANG Fuzhi, CHEN Anna, et al. Costimulatory molecule-related LncRNA model as a potential prognostic biomarker in non-small cell lung cancer[J]. Cancer Medicine, 2023, 12(5): 6419-6436.
[8] ZHANG Lili, MAO Bin, ZHAO Xiaodong, et al. Translation regulatory long non-coding RNA 1 (TRERNA1) sponges microRNA-23a to suppress granulosa cell apoptosis in premature ovarian failure[J].Bioengineered, 2022, 13(2): 2173-2180.
[9] 靳杨, 姜利琼, 房烨, 等.结直肠癌患者血清外泌体与组织中KRAS, BRAF, NRAS 和PIK3CA 基因突变检测及临床意义的比较[J]. 现代检验医学杂志,2023, 38(1): 22-26. JIN Yang, JIANG Liqiong, FANG Ye, et al. Comparison of KRAS, BRAF, NRAS and PIK3CA gene mutations in serum exosomes and tissues of patients with colorectal cancer and their clinical significance[J].Journal of Modern Laboratory Medicine, 2023, 38(1):22-26.
[10] ENTEZARI M, GHANBARIRAD M, TAHERIAZAM A, et al. Long non-coding RNAs and exosomal LncRNAs: Potential functions in lung cancer progression,drug resistance and tumor microenvironment remodeling[J]. Biomedecine & Pharmacotherapie,2022, 150: 112963.
[11] ZHAO Yarong, LIU Luotong, SUN Rongze, et al. Exosomes in cancer immunoediting and immunotherapy[J].Asian Journal of Pharmaceutical Sciences, 2022, 17(2):193-205.
[12] ADNANE S, MARINO A, LEUCCI E. LncRNAs in human cancers: signal from noise[J]. Trends in Cell Biology, 2022, 32(7): 565-573.
[13] HERMAN A B, TSITSIPATIS D, GOROSPE M. Integrated LncRNA function upon genomic and epigenomic regulation[J]. Molecular Cell, 2022, 82(12):2252-2266.
[14] RECK M, REMON J, HELLMANN M D. First-Line immunotherapy for non-small-cell lung cancer[J].Journal of Clinical Oncology, 2022, 40(6): 586-597.
[15] SUN Chengcao, ZHU Wei, LI Shujun, et al. FOXC1-mediated LINC00301 facilitates tumor progression and triggers an immune-suppressing microenvironment in non-small cell lung cancer by regulating the HIF1α pathway[J]. Genome Medicine, 2020, 12(1): 77.
[16] GAO Yanping, ZHANG Nannan, ZENG Zihang, et al. LncRNA PCAT1 activates SOX2 and suppresses radioimmune responses via regulating cGAS/STING signalling in non-small cell lung cancer[J]. Clinical and Translational Medicine, 2022, 12(4): e792.
[17] HUANG Yusheng, XIA Lei, TAN Xiangwu, et al. Molecular mechanism of LncRNA SNHG12 in immune escape of non-small cell lung cancer through the HuR/PD-L1/USP8 axis[J]. Cellular & Molecular Biology Letters, 2022, 27(1): 43.
[18] ZHUANG Jinman, CHEN Zhongwu, CHEN Zishan,et al. Construction of an immune-related LncRNA signature pair for predicting oncologic outcomes and the sensitivity of immunosuppressor in treatment of lung adenocarcinoma[J]. Respiratory Research, 2022,23(1): 123.
[19] WANG Xinyi, JING Hui, LI Hecheng. A novel cuproptosis-related LncRNA signature to predict prognosis and immune landscape of lung adenocarcinoma[J]. Translational Lung Cancer Research, 2023, 12(2): 230-246.
[20] KO?AT D, KA?UZI?SKA-KO?AT ?, KO?LA K,et al. LINC01137/miR-186-5p/WWOX: a novel axis identified from WWOX-related RNA interactome in bladder cancer[J]. Frontiers in Genetics, 2023, 14:1214968.
[21] ZHU Le, SUN Haoting, WANG Shun, et al. Isolation and characterization of exosomes for cancer research[J].Journal of Hematology & Oncology, 2020, 13(1): 152.
[22] HE Jiao, REN Weihong, WANG Wei, et al. Exosomal targeting and its potential clinical application[J]. Drug Delivery and Translational Research, 2022, 12(10):2385-2402.
[23] NI Jianjiao, ZHANG Xiaofei, LI Juan, et al. Tumourderived exosomal LncRNA-SOX2OT promotes bone metastasis of non-small cell lung cancer by targeting the miRNA-194-5p/RAC1 signalling axis in osteoclasts[J].Cell Death & Disease, 2021, 12(7): 662.
[24] L? Xin, LIAN Yingjie, LIU Zhanye, et al. Exosomal long non-coding RNA LINC00662 promotes non-small cell lung cancer progression by miR-320d/E2F1 axis[J].Aging, 2021, 13(4): 6010-6024.
[25] GAO Jian, AO Yongqiang, ZHANG Lingxian, et al. Exosomal circZNF451 restrains anti-PD1 treatment in lung adenocarcinoma via polarizing macrophages by complexing with TRIM56 and FXR1[J]. Journal of Experimental & Clinical Cancer Research, 2022, 41(1):295.
[26] GUNASSEKARAN G R, POONGKAVITHAI VADEVOO S M, BAEK M C, et al. M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages[J]. Biomaterials, 2021, 278:121137.
[27] DOLINA J S, VAN BRAECKEL-BUDIMIR N,THOMAS G D, et al. CD8+ T Cell exhaustion in cancer [J]. Frontiers in Immunology , 2021, 12:715234.
[28] VAN D L A M. THOMMEN D S, SCHUMACHER T N.CD8+T cell states in human cancer:insights from single-cell analysis[J]. Nature Reviews Cancer, 2020,20(4): 218-232.
[29] KIM C G, KIM G, KIM K H, et al. Distinct exhaustion features of T lymphocytes shape the tumor-immune microenvironment with therapeutic implication in patients with non-small-cell lung cancer[J]. Journal for Immunotherapy of Cancer, 2021, 9(12): e002780.
[30] VADLA G P, DAGHAT B, PATTERSON N, et al. Combining plasma extracellular vesicle Let-7b-5p,miR-184 and circulating miR-22-3p levels for NSCLC diagnosis and drug resistance prediction[J]. Scientific Reports, 2022, 12(1): 6693.
[31] HE Wenlong, ZHANG Yeying, XIA Shulan. LncRNA NNT-AS1 promotes non-small cell lung cancer progression through regulating miR-22-3p/YAP1 axis[J]. Thoracic Cancer, 2020, 11(3): 549-560.
[32] SHENG Jin, WANG Huadi, LIU Xiao, et al. Deep sequencing of T-Cell receptors for monitoring peripheral CD8+ T cells in Chinese advanced nonsmall-cell lung cancer patients treated with the anti-PD-L1 antibody[J]. Frontiers in Molecular Biosciences,2021, 8: 679130.

相似文献/References:

[1]张 蕾,任亚女,曾婷婷,等.晚期非小细胞肺癌患者血液实验指标和病理分期等因素对生存时间的影响分析[J].现代检验医学杂志,2016,31(02):83.[doi:10.3969/j.issn.1671-7414.2016.02.025]
 ZHANG Lei,REN Ya-n,ZENG Ting-ting,et al.Analysis of Prognosis Related Factors in Patients with Advanced Non-Small Cell Lung Cancer[J].Journal of Modern Laboratory Medicine,2016,31(02):83.[doi:10.3969/j.issn.1671-7414.2016.02.025]
[2]薛鸿涛,任 敏,李长彬.非小细胞肺癌患者放疗前后血清TSGF和CRP的变化及其临床意义[J].现代检验医学杂志,2016,31(02):136.[doi:10.3969/j.issn.1671-7414.2016.02.041]
 XUE Hong-tao,REN Min,LI Chang-bin.Impact and Clinical Significance of Radiotherapy on Serum TSGF and CRP in Patients with Non Small Cell Lung Cancer[J].Journal of Modern Laboratory Medicine,2016,31(02):136.[doi:10.3969/j.issn.1671-7414.2016.02.041]
[3]王京伟,李 艳,童永清,等.湖北地区非小细胞肺癌EGFR 基因突变及其意义的研究[J].现代检验医学杂志,2016,31(03):7.[doi:10.3969/j.issn.1671-7414.2016.03.003]
 WANG Jing-wei,LI Yan,TONG Yong-qing,et al.Detection of Epidermal Growth Factor Receptor(EGFR) Mutations and the Significance in Patients with Non-small Cell Lung Cancer(NSCLC)of Hubei Province[J].Journal of Modern Laboratory Medicine,2016,31(02):7.[doi:10.3969/j.issn.1671-7414.2016.03.003]
[4]易甲其,范艳平,周宁加,等.血清PTX-3,CYFRA21-1和TPS在非小细胞肺癌中的变化及临床意义[J].现代检验医学杂志,2015,30(05):58.[doi:10.3969/j.issn.1671-7414.2015.05.018]
 YI Jia-qi,FAN Yan-ping,ZHOU Ning-jia,et al.Changes and Clinical Significance of Serum PTX-3, CYFRA21-1,TPS in Non-Small Cell Lung Cancer[J].Journal of Modern Laboratory Medicine,2015,30(02):58.[doi:10.3969/j.issn.1671-7414.2015.05.018]
[5]钱忠萍,凌 晨,祁松楠,等.围非小细胞肺癌手术期T细胞含量变化的研究[J].现代检验医学杂志,2016,31(05):55.[doi:10.3969/j.issn.1671-7414.2016.05.014]
 QIAN Zhong-ping,LING Chen,QI Song-nan,et al.Content Variation of T Cells in Perioperative Patients with Non-Small Cell Lung Cancer[J].Journal of Modern Laboratory Medicine,2016,31(02):55.[doi:10.3969/j.issn.1671-7414.2016.05.014]
[6]黎谢梦丹,罗 凯,吴顺芳,等.华南地区非小细胞肺癌患者肿瘤组织EGFR,ALK和ROS1基因突变分析[J].现代检验医学杂志,2017,32(05):16.[doi:10.3969/j.issn.1671-7414.2017.05.005]
 LIXIE Meng-dan,LUO Kai,WU Shun-fang,et al.Mutation Analysis of EGFR,ALK and ROS1 in Tumor Tissues of Patients with Non-Small Cell Lung Cancer in South of China[J].Journal of Modern Laboratory Medicine,2017,32(02):16.[doi:10.3969/j.issn.1671-7414.2017.05.005]
[7]李小龙,白巧艳,陆婉玲.老年非小细胞肺癌患者低分割放疗对凝血功能的影响[J].现代检验医学杂志,2018,33(05):142.[doi:10.3969/j.issn.1671-7414.2018.05.039]
 LI Xiao-long,BAI Qiao-yan,LU Wan-ling.Influence of Hypofractionated High-Dose Radiotherapy on Coagulation Function in Elderly Patients with Non-Small Cell Lung Cancer[J].Journal of Modern Laboratory Medicine,2018,33(02):142.[doi:10.3969/j.issn.1671-7414.2018.05.039]
[8]郭 华a,齐宗利a,张海祥b,等.非小细胞肺癌组织EGFR/ALK/ROS1基因联合检测的临床意义[J].现代检验医学杂志,2018,33(06):17.[doi:10.3969/j.issn.1671-7414.2018.06.005]
 GUO Huaa,QI Zong-lia,ZHANG Hai-xiangb,et al.Clinical Significance of Combined Detection of EGFR/ALK/ROS1 Genes in Non-Small Cell Lung Cancer[J].Journal of Modern Laboratory Medicine,2018,33(02):17.[doi:10.3969/j.issn.1671-7414.2018.06.005]
[9]黄 刚,陈 霏,肇玉博,等.非小细胞肺癌患者血浆miRNA-145和miRNA-221表达与临床特征及术后复发的相关性研究[J].现代检验医学杂志,2019,34(04):40.[doi:10.3969/j.issn.1671-7414.2019.04.010]
 HUANG Gang,CHEN Fei,ZHAO Yu-bo,et al.Study on the Correlation between the Expression of MicroRNA145 and MicroRNA221 in Plasma and Clinical Characteristics and Postoperative Recurrence in Patients with Non-Small Cell Lung Cancer[J].Journal of Modern Laboratory Medicine,2019,34(02):40.[doi:10.3969/j.issn.1671-7414.2019.04.010]
[10]蒋玲丽,黄中强,王雪亮,等.表皮生长因子受体(EGFR)基因突变检测质控品制备及应用[J].现代检验医学杂志,2020,35(02):145.[doi:10.3969/j.issn.1671-7414.2020.02.040]
 JIANG Ling-li,HUANG Zhong-qiang,WANG Xue-liang,et al.Development and Application of Quality Control Materials for EpidermalGrowth Factor Receptor (EGFR)Mutation Determination[J].Journal of Modern Laboratory Medicine,2020,35(02):145.[doi:10.3969/j.issn.1671-7414.2020.02.040]

备注/Memo

备注/Memo:
基因项目: 陕西省自然科学基础研究,一般项目(青年),NO:2021JQ-403:MAP4K4 激活非RAS 依赖MAPK 轴促肺癌恶性行为机制研究。
作者简介: 孙文泽(1986-),男,博士,主治医师,研究方向:肺癌放射治疗及包括化疗、靶向生物及免疫治疗的综合治疗,E-mail:fwv786G@163.com。
更新日期/Last Update: 2024-03-15