[1]杨春利,戴玉柱,蔡玉春,等.2004~2017年中国大陆AIDS疫情时空分布特征分析[J].现代检验医学杂志,2022,37(01):1-6.[doi:10.3969/j.issn.1671-7414.2022.01.001]
 YANG Chun-li,DAI Yu-zhu,CAI Yu-chun,et al.Temporal-spatial Characteristic Analysis of AIDS Epidemic During 2004~2017 in Mainland China[J].Journal of Modern Laboratory Medicine,2022,37(01):1-6.[doi:10.3969/j.issn.1671-7414.2022.01.001]
点击复制

2004~2017年中国大陆AIDS疫情时空分布特征分析()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第37卷
期数:
2022年01期
页码:
1-6
栏目:
论 著
出版日期:
2022-01-15

文章信息/Info

Title:
Temporal-spatial Characteristic Analysis of AIDS Epidemic During 2004~2017 in Mainland China
文章编号:
1671-7414(2022)01-001-06
作者:
杨春利1戴玉柱1蔡玉春2孙青阳1陈 祥1周华君1田利光2成 军1
(1. 中国人民解放军联勤保障部队第903 医院,杭州 310013;2. 中国疾病预防控制中心寄生虫病预防控制所/ 卫生部寄生虫病原与媒介生物学重点实验室/ 世界卫生组织热带病合作中心/ 国家级热带病国际联合研究中心,上海 200025)
Author(s):
YANG Chun-li1 DAI Yu-zhu1 CAI Yu-chun2 SUN Qing-yang1 CHENG Xiang1 ZHOU Hua-jun1TIAN Li-guang2CHENG Jun1
(1.Department of Clinical Research, the 903rd Hospital of PLA, Hangzhou 310013,China;2. National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention/ Key Laboratory forParasitology and Vector Biology, MOH of China/WHO Collaborating Center for Tropical Diseases/National Center forInternational Research on Tropical Diseases, Shanghai 200025, China)
关键词:
获得性免疫缺陷综合症Joinpoint模型季节自回归综合移动平均模型空间分析
分类号:
R593.32;R446.5
DOI:
10.3969/j.issn.1671-7414.2022.01.001
文献标志码:
A
摘要:
目的 研究 2004~ 2017年全国不同地区 (不含港澳台地区 )获得性免疫缺陷综合症(acquired immune de.ciency syridrome, AIDS)发病率时空变化特性,为预防和控制 AIDS提供参考依据。方法 收集中国疾病预防控制中心公共卫生科学数据中心和国家统计局中国统计年鉴的关于 AIDS流行病学数据;采用 Joinpoint模型、时间序列分析及空间分析的描述性流行病学方法分析 AIDS的时空特点。结果 Joinpoint最终选择模型为 1分段点模型 (P=0.11),分段点为 2012年:其中 2004~2012年和 2012~ 2017年年度变化百分比分别为 34.7%和 9.4%;2004~2017年年度变化百分比为 24.3%。构建的最佳季节差分自回归综合移动平均模型为 (2,1,0)(2,1,0)12,该模型拥有最小的赤池信息量准则和贝叶斯信息度量准则分别为 64.92和 70.85。2004~2008年国内所有省份的 AIDS发病率均小于 50/百万,广西和云南自 2012~2017年连续 5年发病率大于 100/百万,是我国 AIDS发病率最高的两个省份。AIDS传播热点主要集中在我国西南地区,包括广西、云南、贵州、四川和重庆,该区域主要为高 -高聚集。结论 目前中国 AIDS发病率较高且仍处于快速上升的阶段,今后应重点关注广西、云南、贵州、四川、新疆和重庆六省市的 AIDS发病情况,既要做到区域内防控,也要防止其向周边扩散。
Abstract:
Objective To study the temporal and spatial variation characteristics of the incidence of AIDS in different areas ofChina (except of Hong Kong, Macao and Taiwan) from 2004 to 2017, provide reference to prevent and control AIDS. Methods Thedata of AIDS from January 2004 to December 2017 were obtained from the notifiable infectious disease reporting systemsupplied by the Chinese Center for Disease Control and Prevention. The population size was easy to find in the website. Theincidence trend of AIDS was observed by the Joinpoint regression analysis. The seasonal autoregressive integrated movingaverage (SARIMA) model was used to predict the monthly incidence. Geographic clusters was employed to analyze the spatialautocorrelation. The relative importance component of AIDS was detected by the multivariate time series model. All the datawere analyzed with descriptive statistics. Results The final selected model was the Joinpoint model (P=0.11), the break pointwas 2012. The average percentage change (APC) was 34.7% from 2004 to 2012, and 9.4% from 2012 to 2017. The annual APCrate of the fourteen years was 24. 3%. The best SARMA model was(2, 1, 0)(2, 1, 0)12 with the smallest AIC(64.92) and BIC(70.85). From 2004 to 2008, the reported incidence rate was less than 50/1 000 000 among all provinces in China. Guangxi andYunnan had more than 100/1 000 000 patients for seven consecutive years since 2012, which were dominant in China. AIDStransmission hotspots were mainly concentrated in southwest China, including Guangxi, Yunnan, Guizhou and Sichuan, whichwas mainly High-High Cluster. Conclusion At present, the incidence of AIDS in China is high and still in the stage of rapiddevelopment. The provinces with high incidence of AIDS will be mainly concentrated in Guangxi, Yunnan, Sichuan, Xinjiang,Guizhou and Chongqing. In the future prevention and control, we should focus on these key provinces to achieve provincialprevention and control and to prevent its spread to its surrounding areas.

参考文献/References:

[1] World Health Organization. HIV/AIDS [OL].[2021-11-30] https://www.who.int/news-room/fact-sheets/detail/hiv-aids.
[2] 疾病预防控制局.2021 年5 月全国法定传染病疫情概况[OL].http://www.nhc.gov.cn/jkj/s3578/202106/60b4cadb563b4f01ab5f095ba02d54bd.shtml.Bureau of Disease Control and Prevention. Theepidemic situation of statutory reporting infectiousdiseases of May 2021[OL]. http://www.nhc.gov.cn/jkj/s3578/202106/60b4cadb563b4f01ab5f095ba02d54bd.shtml.
[3] 历艳忠, 朱红. 2002-2017 年我国法定传染病发病率和死亡率时间变化趋势[J]. 职业与健康,2019,35(13):1809-1813.LI Yanzhong, ZHU Hong. Time trend of incidenceand mortality of notifiable infectious diseases inChina from 2002-2017[J]. Occupation and Health,2019,35(13):1809-1813.
[4] SHAO Bing, LI Yi, YU Lan, et al. The HIV/AIDSepidemic characteristics in a northeast province ofChina--men who have sex with men have made atremendous contribution to the growth of the HIVepidemic[J].J Infect, 2014 , 68(3):273-280.
[5] QIAN Shasha, GUO Wei, XING Jiannan, et al. Diversityof HIV/AIDS epidemic in China: a result from hierarchicalclustering analysis and spatial autocorrelation analysis[J].AIDS, 2014 , 28(12):1805-1813.
[6] WANG Lan, GUO Wei, LI Dongmin, et al.ChinaNational HIV/AIDS surveillance program. HIVepidemic among drug users in China: 1995-2011[J].Addiction, 2015, 110 Suppl 1(1):20-28.
[7] ZHANG Lei, CHOW E P, JING Jun, et al.HIVprevalence in China: integration of surveillance dataand a systematic review[J]. Lancet Infect Dis, 2013,13(11):955-963.
[8] 尹诗琪, 闫翔宇, 苏鹤轩, 等. 基于ARIMA 模型预测性传播HIV/AIDS 新发现病例数变化趋势[J]. 中国艾滋病性病, 2020, 26(7): 709-713.YIN Shiqi, YAN Xiangyu, SU Hexuan, et al. Forecastof the trend of sexually transmitted HIV/AIDS casesbased on ARIMA model[J]. Chinese Journal of AIDS &STD, 2020, 26(7): 709-713.
[9] 王雅文, 沈忠周, 严宝湖, 等. ARIMA 模型和ARIMA-GRNN 模型在AIDS 发病预测中的应用[J].中华疾病控制杂志, 2018, 22(12): 1287-1290.WANG Yawen, SHEN Zhongzhou, YAN Baohu, etal.Application of ARIMA and hybrid ARIMA-GRNNmodels in forecasting AIDS incidence in China[J].Chinese Journal of Disease Control & Prevention,2018, 22(12): 1287-1290.
[10] 王淑霞, 李明阳, 刘希波, 等. ARIMA 模型在全国艾滋病新发现病例数预测中的可行性研究[J]. 中国艾滋病性病, 2020, 26(7): 705-708.WANG Shuxia, LI Mingyang, LIU Xibo, et al. Studyof ARIMA model in predicting the incidence of AIDSin China[J]. Chinese Journal of AIDS & STD, 2020,26(7): 705-708.
[11] 李爱华, 江震, 段松, 等. 基于CD4+T 淋巴细胞水平反推法估计云南省德宏傣族景颇族自治州HIV 诊断发现率 [J]. 中华预防医学杂志, 2018, 52(8): 833-836.LI Aihua, JIANG Zhen, DUAN Song, et al. Estimationof HIV diagnosis rate with CD4+ T-lymphocyte leveland infected-time model in Dehong Prefecture, YunnanProvince [J].Chinese Journal of Preventive Medicine,2018, 52(8): 833-836.
[12] 杨洪, 叶黎, 苏玲, 等. 2011-2015 年四川省男男性行为人群HIV-1 新发感染率及流行趋势分析 [J]. 中华预防医学杂志, 2019, 53(3): 327-329.YANG Hong, YE Li, SU Ling, et al.An analysis onincidence of HIV-1 epidemics among men who havesex with men in Sichuan Province during 2011-2015[J].Chinese Journal of Preventive Medicine, 2019, 53(3):327-329.
[13] 王迎秋. 河南早期艾滋病起因及其社会环境追溯[D].上海:复旦大学, 2008.WANG Yingqiu. The origins of the AIDS occurred inHenan P.R.China and retrospective analysis of socialenvironment [D].Shanghai:Fudan University, 2018.
[14] 任强, 常文辉, 张梦妍, 等. 2009 ~ 2014 年陕西省艾滋病哨点监测重点人群 HIV 感染和新发感染检测分析[J]. 现代检验医学杂志, 2015, 30(3):56-59.REN Qiang, CHANG Wenhui, ZHANG Mengyan,et al.Analysis of HIV infection and new infectionsdetection of AIDS sentinel surveillance focus groupsin Shaanxi province 2009~2014[J]. Journal of ModernLaboratory Medicine, 2015, 30(3):56-59.
[15] 吴顶峰, 王林. 中国艾滋病流行的社会决定因素初探[J]. 中国社会医学杂志, 2013, 30(3): 173-175.WU Dingfeng, WANG Lin. The preliminary of socialdeterminants for the HIV epidemic in China[J]. ChineseJournal of Social Medicine, 2013, 30(3): 173-175.
[16] 刘东鹏, 吕繁. 艾滋病自愿咨询检测开展情况及影响服务开展和利用的因素[J]. 中国预防医学杂志,2007, 8(4): 508-510.LIU Dongpeng, L? Fan. The condition and factorsthat affect the development and utilization of servicesfor HIV voluntary counseling and testing[J].ChinaPreventive Medicine , 2007,8(4): 508-510.

备注/Memo

备注/Memo:
作者简介:杨春利(1992-),女, 硕士,检验技师,研究方向:感染性疾病实验室检测及流行病学分析,E-mail:chunliyang2014@163.com。
通讯作者:成军(1967-),男,硕士生导师,主任医师,研究方向:临床感染性疾病实验室诊断及流行病学研究,E-mail:cj1171967@163.com。
更新日期/Last Update: 1900-01-01