[1]刘 睿,王玉明.竞争性内源性RNA在急性髓系白血病中的研究进展[J].现代检验医学杂志,2022,37(03):198-204.[doi:10.3969/j.issn.1671-7414.2022.03.041]
 LIU Rui,WANG Yuming.Research Progress of Competitive Endogenous RNA in Acute Myeloid Leukemia[J].Journal of Modern Laboratory Medicine,2022,37(03):198-204.[doi:10.3969/j.issn.1671-7414.2022.03.041]
点击复制

竞争性内源性RNA在急性髓系白血病中的研究进展()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第37卷
期数:
2022年03期
页码:
198-204
栏目:
综 述
出版日期:
2022-05-15

文章信息/Info

Title:
Research Progress of Competitive Endogenous RNA in Acute Myeloid Leukemia
文章编号:
1671-7414(2022)03-198-07
作者:
刘 睿王玉明
( 昆明医科大学第二附属医院检验科, 昆明 650101)
Author(s):
LIU RuiWANG Yuming
(Department of Clinical Laboratory, the Second Affiliated Hospital of Kunming Medical University, Yunnan Kunming 650101,China)
关键词:
急性髓系白血病竞争性内源性RNA
分类号:
R557;R392.11
DOI:
10.3969/j.issn.1671-7414.2022.03.041
文献标志码:
A
摘要:
急性髓系白血病 (acute myeloid leukemia, AML) 是多种因素引起的造血系统恶性疾病,具有很高的复发率及死亡率。非编码 RNA在 AML的发生发展过程中发挥着重要作用。竞争性内源性 RNA(competing endogenous RNA, ceRNA)观点指出,不同的非编码 RNA可通过作用于相同的 miRNA反应元件 (MRE)从而调控基因的表达。目前越来越多的研究表明,非编码 RNA作为 ceRNA在调控 AML的增殖、凋亡、侵袭和耐药等生物学过程中发挥关键作用。该文主要对 ceRNA在 AML生物学过程中的调控作用,以及治疗和预后中的临床意义作一综述。
Abstract:
Acute myeloid leukemia (AML) is a malignant disease of the hematopoietic system caused by a variety of factors, with a high recurrence rate and mortality rate. Non-coding RNA plays an important role in the occurrence and development of AML. Competing endogenous RNA (ceRNA) point of view points out that different non-coding RNAs can regulate gene expression by acting on the same miRNA response element (MRE). At present, more and more studies have shown that non-coding RNA as ceRNA plays a key role in regulating the biological processes of AML such as proliferation, apoptosis, invasion and drug resistance. This article mainly reviews the regulatory role of non-coding RNA as ceRNA in the biological process of AML, as well as its clinical significance in treatment and prognosis.

参考文献/References:

[1] THOMAS D, MAJETI R. Biology and relevance of human acute myeloid leukemia stem cells[J]. Blood, 2017, 129(12): 1577-1585.
[2] LI Mingyu, CUI Xianglun, GUAN Hongzi. Micro RNAs: pivotal regulators in acute myeloid leukemia[J]. Annals of Hematology, 2020, 99(3): 399-412.
[3] TIAN Yunjiao, WANG Yanhua, XIAO Aiju, et al. Long noncoding RNA SBF2-AS1 act as a ceRNA to modulate cell proliferation via binding with miR-188-5p in acute myeloid leukemia[J]. Artificial Cells Nanomedicine and Biotechnology (Print), 2019, 47(1): 1730-1737.
[4] ZHUANG M F, LI L J, MA J B. LncRNA HOTTIP promotes proliferation and cell cycle progression of acute myeloid leukemia cells[J]. European Review for Medical and Pharmacological Sciences, 2019, 23(7): 2908-2915.
[5] MORLANDO M, BALLARINO M, FATICA A, et al. The role of long noncoding RNAs in the epigenetic control of gene expression[J]. Chem Med Chem, 2014, 9(3): 505-510.
[6] SALMENA L, POLISENO L, TAY Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language[J]. Cell, 2011, 146(3): 353-358.
[7] ABDOLLAHZADEH R, DARAEI A, MANSOORI Y, et al. Competing endogenous RNA(ceRNA)cross talk and language in ceRNA regulatory networks:A new look at hallmarks of breast cancer[J]. Journal of Cellular Physiology, 2019, 234(7): 10080-10100.
[8] QI Xiaolong, ZHANG Dahong, WU Nan, et al. ceRNA in cancer: possible functions and clinical implications[J]. Journal of Medical Genetics, 2015, 52(10): 710-718.
[9] SANCHEZ-MEJIASA, TAY Y. Competing endogenous RNA networks: tying the essential knots for cancer biology and therapeutics[J]. Journal of Hematology & Oncology, 2015, 8: 30.
[10] LIU Xianghua, SUN Ming, NIE Feng-qi, et al. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR- 331-3p in gastric cancer[J]. Molecular Cancer, 2014, 13: 92.
[11] 张振, 李芬.ceRNA与肿瘤[J]. 现代检验医学杂志, 2016, 31(4):128-130. ZHANG Zhen, LI Fen. CeRNA and tumour[J]. Journal of Modern Laboratory Medicine,2016,31(4):128-130.
[12] MA Lifei, SONG Guiqin, LI Meiyu, et al. Construction and comprehensive analysis of a ceRNA network to reveal potential novel biomarkers for Triple-Negative breast cancer[J]. Cancer Management and Research, 2020, 2020(12): 7061-7075.
[13] LONG Junyu, XIONG Jianping, BAI Yi, et al. Construction and investigation of a lncRNA-associated ceRNA regulatory network in cholangiocarcinoma[J]. Front Oncol, 2019, 9:649.
[14] LIU Jingwei, LI Hao, ZHENG Bowen, et al. Competitive endogenous RNA (ceRNA) regulation network of lncRNA-miRNA-mRNA in colorectal carcinogenesis[J]. Digestive Diseases and Sciences, 2019, 64(7): 1868-1877.
[15] DISTEFANO J K. The emerging role of long noncoding RNAs in human disease[J]. Methods in Molecular Biology (Clifton, N.J.), 2018, 1706: 91-110.
[16] SHI Jie, DAI Rongqin, CHEN Yuqing, et al. LncRNA LINP1 regulates acute myeloid leukemia progression via HNF4α/AMPK/WNT5A signaling pathway[J]. Hematological Oncology, 2019, 37(4): 474-482.
[17] TANG Ying, CHEUNG B B, ATMADIBRATA B, et al.The regulatory role of long noncoding RNAs in cancer[J]. Cancer Letters, 2017, 391(391): 12-19.
[18] MORLANDO M, BALLARINO M, FATICA A, et al. The role of long noncoding RNAs in the epigenetic control of gene expression[J]. Chem Med Chem, 2014, 9(3):505-510.
[19] CHEETHAM S W, GRUHL F, MATTICK J S, et al. Long noncoding RNAs and the genetics of cancer[J]. British Journal of Cancer, 2013, 108(12): 2419-2425.
[20] LI Li, WAN Dingming, LI Lin, et al. lncRNA RAET1K promotes the progression of acute myeloid leukemia by targeting miR-503-5p/INPP4B axis[J]. Onco Targets and Therapy, 2021, 14: 531-544.
[21] SUN M D, ZHENG Y Q, WANG L P, et al. Long noncoding RNA UCA1 promotes cell proliferation, migration and invasion of human leukemia cells via sponging miR-126[J]. European Review for Medical and Pharmacological Sciences, 2018, 22(8): 2233-2245.
[22] XING Chongyun, HU Xiaoqu, XIE Feiyan, et al. Long non-coding RNA HOTAIR modulates c-KIT expression through sponging miR-193a in acute myeloid leukemia[J]. FEBS Letters, 2015, 589(15): 1981-1987.
[23] CHEN Zhenhua, WANG Wentao, HUANG Wei, et al. The lncRNA HOTAIRM1 regulates the degradation of PML-RARA oncoprotein and myeloid cell differentiation by enhancing the autophagy pathway[J]. Cell Death and Differentiation, 2017, 24(2): 212-224.
[24] SUN Huifang, SUN Yongfa, CHEN Qing, et al. LncRNA KCNQ1OT1 contributes to the progression and chemoresistance in acute myeloid leukemia by modulating Tspan3 through suppressing miR-193a- 3p[J]. Life Sci, 2020, 241:117161.
[25] ZHANG Yuan, LIU Yufeng, XU Xueju. Knockdown of lncRNA-UCA1 suppresses chemoresistance of pediatric AML by inhibiting glycolysis through the microRNA-125a/hexokinase 2 pathway[J]. Journal of Cellular Biochemistry, 2018, 119(7): 6296-6308.
[26] DONG Xiaoya, FANG Zhigang, YU Mingxue, et al. Knockdown of long noncoding RNA HOXAAS2 suppresses chemoresistance of acute myeloid leukemia via the miR-520c-3p/S100A4 axis[J]. Cellular Physiology and Biochemistry, 2018, 51(2): 886-896.
[27] YIN Xuejiao, HUANG Sui, ZHU Ruiqi, et al. Identification of long non-coding RNA competing interactions and biological pathways associated with prognosis in pediatric and adolescent cytogenetically normal acute myeloid leukemia[J]. Cancer Cell International, 2018, 18: 122.
[28] CHENG Yaqi, SU Yaru, WANG Shoubi, et al. Identification of circRNA-lncRNA-miRNA-mRNA competitive endogenous RNA network as novel prognostic markers for acute myeloid leukemia[J]. Genes, 2020, 11(8): 868.
[29] CHEN Lianxiang, WANG Wei, CAO Lixia, et al. Long non-coding RNA CCAT1 acts as a competing endogenous RNA to regulate cell growth and differentiation in acute myeloid leukemia[J]. Molecules and Cells, 2016, 39(4): 330-336.
[30] CHEN Beili, LI Yuchuan, NIE Yuwei, et al. Long noncoding RNA LINC01268 promotes cell growth and inhibits cell apoptosis by modulating miR-217/SOS1 axis in acute myeloid leukemia[J]. Braz J Med Biol Res. 2020, 53(8):e9299.
[31] ZHANG Xingxia, TAO Weiguo. Long noncoding RNA LINC00152 facilitates the leukemogenesis of acute myeloid leukemia by promoting CDK9 through miR- 193a[J]. DNA and Cell Biology, 2019, 38(3): 236-242.
[32] DONG Xuemei, XU Xin, GUAN Yanping. LncRNA LINC00899 promotes progression of acute myeloid leukaemia by modulating miR-744-3p/YY1 signalling[J]. Cell Biochemistry and Function, 2020, 38(7): 955-964.
[33] SHENG Xianfu, HONG Lili, LI Hui, et al. Long non-coding RNA MALAT1 modulate cell migration, proliferation and apoptosis by sponging microRNA- 146a to regulate CXCR4 expression in acute myeloid leukemia[J]. Hematology (Amsterdam, Netherlands), 2021, 26(1): 43-52.
[34] HU Ning, CHEN Li, WANG Chao, et al. MALAT1 knockdown inhibits proliferation and enhances cytarabine chemosensitivity by upregulating miR-96 in acute myeloid leukemia cells[J]. Biomedicine & Pharmacotherapy, 2019, 112: 108720.
[35] ZHANG B, SUN Y F, ZHANG X M, et al. TUG1 weakens the sensitivity of acute myeloid leukemia cells to cytarabine by regulating miR-655-3p/ CCND1 axis[J]. European Review for Medical and Pharmacological Sciences, 2020, 24(9): 4940-4953.
[36] VERDUCI L, STRANO S, YARDEN Y, et al. The circRNA-microRNA code: emerging implications for cancer diagnosis and treatment[J]. Molecular Oncology, 2019, 13(4): 669-680.
[37] ZHANG Siyuan. The characteristics of circRNA as competing endogenous RNA in pathogenesis of acute myeloid leukemia[J]. BMC Cancer, 2021, 21(1): 277.
[38] PATOP I L, W?ST S, KADENER S. Past, present, and future of circRNAs[J]. The EMBO Journal, 2019, 38(16): e100836.
[39] LI Qinghua, LUAN Qingxia, ZHU Hailing, et al. Circular RNA circ_0005774 contributes to proliferation and suppresses apoptosis of acute myeloid leukemia cells via circ_0005774/miR-192-5p/ULK1 ceRNA pathway[J]. Biochemical and Biophysical Research Communications, 2021, 551: 78-85.
[40] YUAN D M, MA J, FANG W B. Identification of noncoding RNA regulatory networks in pediatric acute myeloid leukemia reveals circ-0004136 could promote cell proliferation by sponging miR-142[J]. European Review for Medical and Pharmacological Sciences, 2019, 23(21): 9251-9258.
[41] SU Xiaoyu, ZHAO Qiao, KE Jinming, et al. Circ_0002232 acts as a potential biomarker for AML and reveals a potential ceRNA network of circ_0002232/miR-92a-3p/PTEN[J]. Cancer Management and Research, 2020, 12: 11871-11881.
[42] LEI Ping, CHEN Jianjun, LIAO Chushu, et al. Silencing of circ_0009910 inhibits acute myeloid leukemia cell growth through increasing miR-20a- 5p[J]. Blood Cells, Molecules & Diseases, 2019, 75: 41-47.
[43] ZHANG Lingyan, BU Zibin, SHEN Juan, et al. A novel circular RNA (hsa_circ_0000370) increases cell viability and inhibits apoptosis of FLT3-ITD-positive acute myeloid leukemia cells by regulating miR-1299 and S100A7A[J]. Biomedicine & Pharmacotherapy, 2020, 122: 109619.
[44] SHANG Jin, CHEN Weimin, WANG Zhihong, et al. CircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p-XIAP axis[J]. Experimental Hematology, 2019, 70: 42-54.e3.
[45] POLISENO L. Pseudogenes: newly discovered players in human cancer[J]. Science Signaling, 2012, 5(242): re5.
[46] TANG Jingsi, NING Ruihong, ZENG Bo, et al. Molecular evolution of PTEN pseudogenes in mammals[J]. PLoS One, 2016, 11(12): e0167851.
[47] 王翠翠, 怀磊, 张翠萍, 等. 抑癌基因PTEN 与其假 基因PTENP1 在急性白血病细胞中的表达及其相关 性研究[J]. 中华血液学杂志,2012,33(11):896-901. WANG Cuicui, HUAI Lei, ZHANG Cuiping, et al.Study on expression of PTEN gene and its pseudogene PTENPl in acute leukemia and correlation between them[J]. Chinese Journal Hematology, 2021, 33(11):896-901.
[48] YU Gan, YAO Weimin, GUMIREDDY K, et al. Pseudogene PTENP1 functions as a competing endogenous RNA to suppress Clear-Cell renal cell carcinoma progression[J]. Molecular Cancer Therapeutics, 2014, 13(12): 3086-3097.
[49] 刘涛, 宋红丽, 王玉亮, 等. 微RNA 抑制物: 竞争 性内源RNA 和人工miRNA 吸附物[J]. 生命的化 学,2014,34(6):757-764. LIU Tao, SONG Hongli, WANG Yuliang, et al. MicroRNA inhibitors: competing endogenous RNAs and artificialmiRNA sponges[J].Chemistry of Life. 2014,34(6):757-764.
[50] THOMSON D W, DINGER M E. Endogenous microRNA sponges: evidence and controversy[J]. Nature Reviews Genetics, 2016, 17(5): 272-283.
[51] 钱傅燕雯, 冯凡, 许文林.ceRNA 在肿瘤中的研究进 展[J]. 现代肿瘤医学,2019,27(7):1237-1240. QIAN Fuyanwen,FENG Fan,XU Wenlin. Reserch progress of ceRNA in cancer[J]. Journal of Modern Oncology, 2019,27(7):1237-1240.

相似文献/References:

[1]张灵玲,张朝明,谢国丽.中性粒VCS参数表达的性别差及差异表达的临床应用[J].现代检验医学杂志,2015,30(06):86.[doi:10.3969/j.issn.1671-7414.2015.06.025]
 ZHANG Ling-ling,ZHANG Chao-ming,XIE Guo-li.Gender Differences of Neutrophil VCS Parameter Expression and Clinical Application of Differential Expression[J].Journal of Modern Laboratory Medicine,2015,30(03):86.[doi:10.3969/j.issn.1671-7414.2015.06.025]
[2]郑源海,林元峰,许瑞元,等.急性髓系白血病免疫表型特征与预后相关性分析[J].现代检验医学杂志,2018,33(04):90.[doi:10.3969/j.issn.1671-7414.2018.04.024]
 ZHENG Yuan-hai,LIN Yuan-feng,XU Rui-yuan,et al.Correlative Analysis of Immunophenotypic Characteristics and Prognosis in Acute Myeloid Leukemia[J].Journal of Modern Laboratory Medicine,2018,33(03):90.[doi:10.3969/j.issn.1671-7414.2018.04.024]
[3]范臻佳,金丽兰,史册,等.急性髓系白血病患者外周血粒细胞、单核细胞膜GPI锚链和红细胞表面CD59表达水平的研究[J].现代检验医学杂志,2019,34(01):26.[doi:10.3969/j.issn.1671-7414.2019.01.007]
 FAN Zhen-jia,JIN Li-lan,SHI Ce,et al.Expression Level of Peripheral Blood Granulocytes and Monocytes GPI Anchor Chain and Erythrocyte CD59 in AML Patients[J].Journal of Modern Laboratory Medicine,2019,34(03):26.[doi:10.3969/j.issn.1671-7414.2019.01.007]
[4]李 悦,徐焕铭,樊 华.基于TCGA 数据对60 岁以上不同分层急性髓系白血病患者相关lncRNA 的基因信息学分析[J].现代检验医学杂志,2020,35(03):20.[doi:10.3969/j.issn.1671-7414.2020.03.005]
 LI Yue,XU Huan-ming,FAN Hua.Genetic Informatics Analysis of lncRNA Related to Patients with Different Stratified Acute Myeloid Leukemia Over 60 Years Based on TCGA Database[J].Journal of Modern Laboratory Medicine,2020,35(03):20.[doi:10.3969/j.issn.1671-7414.2020.03.005]
[5]张梦娜,李文生.髓过氧化物酶在淋巴造血系统疾病表达的最新研究进展[J].现代检验医学杂志,2022,37(02):195.[doi:10.3969/j.issn.1671-7414.2022.02.039]
 ZHANG Meng-na,LI Wen-sheng.Recent Research Progress of Myeloperoxidase Expression in Lymphatic Hematopoietic Diseases[J].Journal of Modern Laboratory Medicine,2022,37(03):195.[doi:10.3969/j.issn.1671-7414.2022.02.039]
[6]萧杏贤,刘 德,姜朝晖.AML不同疾病阶段患者T细胞耗竭及相关细胞因子表达水平实验研究[J].现代检验医学杂志,2022,37(03):138.[doi:10.3969/j.issn.1671-7414.2022.03.029]
 XIAO Xing-xian,LIU De,JIANG Zhao-hui.Experimental Study on T Cell Exhaustion and Related Cytokine Expression Levels in Patients with AML at Different Disease Stages[J].Journal of Modern Laboratory Medicine,2022,37(03):138.[doi:10.3969/j.issn.1671-7414.2022.03.029]
[7]罗 婷,段蕴枭,钟 浩,等.急性髓系白血病患者血清miR-24,miR-106a 水平表达及其临床诊断价值[J].现代检验医学杂志,2024,39(05):1.[doi:10.3969/j.issn.1671-7414.2024.05.001]
 LUO Ting,DUAN Yunxiao,ZHONG Hao,et al.Expression of Serum miR-24 and miR-106a Levels in Patients with Acute Myeloid Leukemia and Its Clinical Diagnostic Value[J].Journal of Modern Laboratory Medicine,2024,39(03):1.[doi:10.3969/j.issn.1671-7414.2024.05.001]

备注/Memo

备注/Memo:
基金项目:昆明医科大学研究生创新基金(2021S211),云南省科技计划项目昆医联合项目(201901B070092)。
作者简介:刘睿(1997-),女,硕士,研究方向:主要从事临床检验诊断学研究,E- mail:782738758@qq.com。
更新日期/Last Update: 1900-01-01