参考文献/References:
[1] L?PEZ-NORIEGA L, RUTTER G A. Long non-coding RNAs as key modulators of pancreatic β-cell mass and function[J].Front Endocrinol (Lausanne). 2021,11:610213.
[2] DA Miao, ZHUANG Jing, ZHOU Yani, et al. Role of long noncoding RNA taurine-upregulated gene 1 in cancers[J]. Molecular Medicine (Cambridge, Mass.), 2021, 27(1): 51.
[3] 王东琴 , 霍浩然 , 秦瑞峰 , 等 . 胰腺癌患者血清 lncRNA-SNHG11的表达水平及其临床意义 [J]. 现代检验医学杂志 , 2022, 37(01): 125-129. WANG Dongqin, HUO Haoran, QIN Ruifeng, et al. Expression level of serum lncRNA-SNHG11 in patients with pancreatic cancer and its clinical significance [J]. Journal of Modern Laboratory Medicine, 2022, 37(1):125-129.
[4] 王月霞 , 马媛 , 底煜 . 长链非编码 RNA TUG1在血管相关疾病中的研究进展 [J]. 医学综述 , 2021, 27(21): 4171-4176. WANG Yuexia, MA Yuan, DI Yu. Research progress of long non-coding RNA TUG1 in vascular associated diseases [J]. Medical Recapitulate, 2021, 27(21) 4171-4176.
[5] BALIOU S, KYRIAKOPOULOS A M, SPANDIDOS D, et al. Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review)[J]. International Journal of Oncology, 2020, 57(3): 631-664.
[6] YOUNG T L, MATSUDA T, CEPKO C L. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina[J]. Current Biology, 2005, 15(6): 501-512.
[7] YIN Dandan, ZHANG Erbao, YOU Lianghui, et al. Downregulation of lncRNA TUG1 affects apoptosis and insulin secretion in mouse pancreatic β cells[J]. Cellular Physiology and Biochemistry, 2015, 35(5): 1892-1904.
[8] 付楚涵 , 陈敏 , 胡双海 , 等 .牛磺酸上调基因 1与疾病的关系 [J]. 中南大学学报 (医学版 ), 2020, 45(9): 1127-1135. FU Chuhan, CHEN Min, HU Shuanghai, et al. Taurine up-regulated gene 1 and disease development[J]. Journal of Central South University(Medical Science), 2020, 45(9): 1127-1135.
[9] TREWIN A J , SILVER J , DILLON H T , et al. Long non-coding RNA TUG1 modulates mitochondrial and myogenic responses to exercise in skeletal muscle[J]. BMC Biology, 2022, 20(1):164.
[10] LONG Jianyin, BADAL S S, YE Zengchun, et al. Long noncoding RNA TUG1 regulates mitochondrial bioenergetics in diabetic nephropathy[J]. Journal of Clinical Investigation, 2016, 126(11): 4205-4218.
[11] GU Wenchao, YUAN Yaping, WANG Linxuan, et al. Long non-coding RNA TUG1 promotes airway remodelling by suppressing the miR-145-5p/DUSP6 axis in cigarette smoke-induced COPD[J]. Journal of Cellular and Molecular Medicine, 2019, 23(11): 7200-7209.
[12] LI Yihui, DAI Chengting, YUAN Yi, et al. The mechanisms of lncRNA TUG1 in islet dysfunction in a mouse model of intrauterine growth retardation[J]. Cell Biochemistry Function, 2020, 38(8): 1129-1138.
[13] ZHANG P, LI Y N, TU S, et al. SP1-induced lncRNA TUG1 regulates proliferation and apoptosis in islet cells of type 2 diabetes mellitus via the miR-188-3p/FGF5 axis[J]. European Review for Medical and Pharmacological Sciences, 2021, 25(4): 1959-1966.
[14] WEI Weiwei, WANG Xingquan, WEI Yaqing, et al. LncRNA TUG1 protects intestinal epithelial cells from damage induced by high glucose and high fat via AMPK/SIRT1[J]. Molecular Medicine Reports, 2022, 25(4): 139.
[15] ZHANG Ying, MA Yuhang, GU Mingyu, et al. LncRNA TUG1 promotes the brown remodeling of white adipose tissue by regulating miR-204-targeted SIRT1 in diabetic mice[J]. International Journal of Molecular Medicine, 2020, 46(6): 2225-2234.
[16] MENG Dongdong, WU Lina, LI Zhifu, et al. LncRNA TUG1 ameliorates diabetic nephropathy via inhibition of PU.1/RTN1 signaling pathway[J]. Journal of Leukocyte Biology, 2022, 111(3): 553-562.
[17] 马媛 , 张大鹏 , 王想 , 等 . lncRNA TUG1对高糖诱导的小鼠足细胞 MPC5凋亡的影响 [J]. 郑州大学学报(医学版), 2019, 54(6): 863-866. MA Yuan, ZHANG Dapeng, WANG Xiang, et al. Effects of lncRNA TUG1 on high glucose-induced apoptosis of mouse podocyte MPC5 [J]. Journal of Zhengzhou University(Medical Sciences), 2019,54(6) 863-866.
[18] SHEN Hongchun, MING Yao, XU Chuanlan, et al. Deregulation of long noncoding RNA (TUG1) contributes to excessive podocytes apoptosis by activating endoplasmic reticulum stress in the development of diabetic nephropathy[J]. Journal of Cellular Physiology, 2019,234(9 Pt.1): 15123-15133.
[19] LEI Min, KE Guibao, WANG Yan, et al. Long non-coding RNA TUG1 sponges microRNA-9 to protect podocytes from high glucose-induced apoptosis and mitochondrial dysfunction via SIRT1 upregulation[J]. Experimental and Therapeutic Medicine, 2022, 23(3): 236.
[20] WANG Fei, GAO Xiangyang, ZHANG Rong, et al. LncRNA TUG1 ameliorates diabetic nephropathy by inhibiting miR-21 to promote TIMP3-expression[J]. International Journal of Clinical and Experimental Pathology, 2019, 12(3): 717-729.
[21] ZANG X J, LI L, DU X, et al. LncRNA TUG1 inhibits the proliferation and fibrosis of mesangial cells in diabetic nephropathy via inhibiting the PI3K/ AKT pathway[J]. European Review for Medical and Pharmacological Sciences, 2019, 23(17): 7519-7525.
[22] LONG Jianyin, GALVAN D L, MISE K, et al. Role for carbohydrate response element-binding protein (ChREBP) in high glucose-mediated repression of long noncoding RNA Tug1[J]. The Journal of Biological Chemistry, 2020, 295(47): 15840-15852.
[23] LI Li, LONG Jianyin, MISE K, et al. PGC1α is required for the renoprotective effect of lncRNA TUG1 in vivo and links TUG1 with urea cycle metabolites[J]. Cell Reports, 2021, 36(6): 109510.
[24] PETRICA L, HOGEA E, GADALEAN F, et al. Long noncoding RNAs may impact podocytes and proximal tubule function through modulating miRNAs expression in early diabetic kidney disease of type 2 diabetes mellitus patients[J]. International Journal of Medical Sciences, 2021, 18(10): 2093-2101.
[25] WANG Shaoqiang, YI Pengfei, WANG Na, et al. LncRNA TUG1/miR-29c-3p/SIRT1 axis regulates endoplasmic reticulum stress-mediated renal epithelial cells injury in diabetic nephropathy model in vitro[J]. PLoS One, 2021, 16(6): e0252761.
[26] 吴鹤 ,吴融花 .长链非编码 RNA牛磺酸上调基因 1靶向 miR-34a-5p/沉默信息调节因子 2相关酶 1对糖尿病肾脏疾病氧化应激损伤调控作用的研究 [J].中国糖尿病杂志 ,2021,29(8):620-628. WU He, WU Ronghua. LncRNA TUG1 targets miR-34a-5p/SIRT1 to regulate the oxidative stress in diabetic kidney disease [J]. Chinese Journal of Diabetes, 2021,29(8) 620-628.
[27] DUAN Lijun, DING Min, HOU Lijun, et al. Long noncoding RNA TUG1 alleviates extracellular matrix accumulation via mediating microRNA-377 targeting of PPARγ in diabetic nephropathy [J]. Biochemical and Biophysical Research Communications, 2017, 484(3): 598-604.
[28] SHI Qian, TANG Jinhua, WANG Minfeng, et al. Knockdown of long non-coding RNA TUG1 suppresses migration and tube formation in high Glucose-Stimulated human retinal microvascular endothelial cells by sponging miRNA-145[J]. Molecular Biotechnology, 2022, 64(2): 171-177.
[29] GONG Weifeng, LI Jie, ZHU Guangyue, et al. Chlorogenic acid relieved oxidative stress injury in retinal ganglion cells through IncRNA-TUG1/Nrf2[J]. Cell Cycle (Georgetown, Tex.), 2019, 18(14): 1549-1559.
[30] LAI Luying, WANG Yongwei, PENG Shenghui, et al. Bupivacaine induces ROS-dependent autophagic damage in DRG neurons via TUG1/mTOR in a high-glucose environment[J]. Neurotoxicity Research, 2022, 40(1): 111-126.
[31] YAN H Y, BU S Z, ZHOU W B, et al. TUG1 promotes diabetic atherosclerosis by regulating proliferation of endothelial cells via Wnt pathway[J]. European Review for Medical and Pharmacological Sciences, 2018, 22(20): 6922-6929.
[32] ZHAO Lei, LI Weiguo, ZHAO Hao. Inhibition of long non-coding RNA TUG1 protects against diabetic cardiomyopathy induced diastolic dysfunction by regulating miR-499-5p[J]. American Journal of Translational Research, 2020, 12(3): 718-730.
[33] ZHU Yun, FENG Zezhou, JIAN Zhao, et al. Long noncoding RNA TUG1 promotes cardiac fibroblast transformation to myofibroblasts via miR-29c in chronic hypoxia[J]. Molecular Medicine Reports, 2018, 18(3): 3451-3460.
[34] LI Yang, ZHI Kangkang, HAN Shilong, et al. TUG1 enhances high glucose-impaired endothelial progenitor cell function via miR-29c-3p/PDGF-BB/ Wnt signaling[J]. Stem Cell Research & Therapy, 2020, 11(1): 441.
[35] SU Manna, YU Tongxin, YU Yongyi, et al. LncRNA TUG1 and hsa_circ_0071106 can be combined as biomarkers in type 2 diabetes mellitus[J].Exp Biol Med (Maywood),2022 ,247(18):1609-1618.
[36] 徐兴燕 . 睡眠特征-长链非编码 RNA暴露与 2型糖尿病的关联研究 [D].福州:福建医科大学 ,2021. XU Xingyan. Study on the association of sleep characteristics- long non-coding RNA with type 2 diabetes mellitus [D]. Fuzhou:Fujian Medical University, 2021.
[37] 李一卉 , 孙璐 , 戴程婷 , 等 . 长链非编码 RNA TUG1/ MALAT1在 2型糖尿病患者外周血单个核细胞中的表达 [J]. 南京医科大学学报(自然科学版) , 2019, 39(4): 534-538. LI Yihui, SUN Lu, DAI Chengting, et al. Expression of long non-coding RNA TUG1/MALAT1 in peripheral blood mononuclear cells of type 2 diabetic patients [J]. Journal of Nanjing Medical University(Natural Sciences), 2019,39(4) 534-538.
[38] ABDELALEEM O O, SHAKER O G, MOHAMED M M, et al. Differential expression of serum TUG1, LINC00657, miR-9 and miR-106a in diabetic patients with and without ischemic stroke [J]. Frontiers in Molecular Bioscience, 2021,8:758742.
[39] 樊小宝 , 张蓬杰 , 王晓明 , 等 . 早期糖尿病肾病患者血清 LncRNA TUG1表达及临床意义 [J]. 中国中西医结合肾病杂志 , 2021, 22(11): 982-984. FAN Xiaobao, ZHANG Pengjie, WANG Xiaoming, et al. Expression and clinical significance of serum lncRNA TUG1 in patients with early diabetes nephropathy [J]. Chinese Journal of Integrated Traditional and Western Nephrology, 2021,22(11): 982-984.
[40] MOHAMMAD H M F, ABDELGHANY A A, AL AGEELI E,et al. Long non-coding RNAs gene variants as molecular markers for diabetic retinopathy risk and response to anti-VEGF therapy[J].Pharmgenomics Pers Med, 2021 , 14:997-1014.
相似文献/References:
[1]谭婷婷,程 莉,魏红霞,等.尿α1-酸性糖蛋白在早期糖尿病肾病诊断中的应用价值[J].现代检验医学杂志,2016,31(01):80.[doi:10.3969/j.issn.1671-7414.2016.01.023]
TAN Ting-ting,CHENG Li,WEI Hong-xia,et al.Value of Urinary α1-Acid Glycoprotein
in Early Diagnosis of Diabetic Nephropathy[J].Journal of Modern Laboratory Medicine,2016,31(06):80.[doi:10.3969/j.issn.1671-7414.2016.01.023]
[2]翟海军,朱 晶.NSE在糖尿病周围神经病变中的应用价值[J].现代检验医学杂志,2015,30(04):161.[doi:10.3969/j.issn.1671-7414.2015.04.050]
ZHAI Hai-jun,ZHU Jing.Application of NSE in Diabetic Peripheral Neuropathy[J].Journal of Modern Laboratory Medicine,2015,30(06):161.[doi:10.3969/j.issn.1671-7414.2015.04.050]
[3]詹 颉,张 华,闫福堂,等.血清NGAL与Cr,BUN,RBP,Cys-C联合检测在糖尿病肾病早期诊断中的应用[J].现代检验医学杂志,2016,31(04):100.[doi:10.3969/j.issn.16717-414.2016.04.028]
ZHAN Jie,ZHANG Hua,YAN Fu-tang,et al.Application of Combined Detection of Serum NGAL and Cr,BUN,RBP
and Cys C in Early Diagnosis of Diabetic Nephropathy[J].Journal of Modern Laboratory Medicine,2016,31(06):100.[doi:10.3969/j.issn.16717-414.2016.04.028]
[4]王洋一,胡宏章.在不同性别及年龄间糖化血红蛋白水平差异分析[J].现代检验医学杂志,2017,32(02):123.[doi:10.3969/j.issn.1671-7414.2017.02.034]
WANG Yang-yi,HU Hong-zhang.Differential Analysis of Glycosylated Hemoglobin
in Different Sex and Age[J].Journal of Modern Laboratory Medicine,2017,32(06):123.[doi:10.3969/j.issn.1671-7414.2017.02.034]
[5]严海忠,王 娟,卢兰芬,等.糖尿病患者感染产ESBLs肠杆菌科细菌的耐药性及危险因素分析[J].现代检验医学杂志,2018,33(05):82.[doi:10.3969/j.issn.1671-7414.2018.05.022]
YAN Hai-zhong,WANG Juan,LU Lan-fen,et al.Analysis of the Drug Resistance and Risk Factors of ESBLs-Producing Enterobacteriaceae Infection in Diabetics[J].Journal of Modern Laboratory Medicine,2018,33(06):82.[doi:10.3969/j.issn.1671-7414.2018.05.022]
[6]张求霞a,汪隆海a,昌国庆a,等.尿液6种蛋白与CysC水平检测对糖尿病肾病的诊断价值[J].现代检验医学杂志,2019,34(01):67.[doi:10.3969/j.issn.1671-7414.2019.01.017]
ZHANG Qiu-xiaa,WANG Long-haia,CHANG Guo-qing
a,et al.Clinical Value of Detection of 6 Proteins and Cystatin C
in Urine for Early Diagnosis of Diabetic Kidney Disease[J].Journal of Modern Laboratory Medicine,2019,34(06):67.[doi:10.3969/j.issn.1671-7414.2019.01.017]
[7]廖衍强.糖尿病并发高血压患者血清Cys C 与P 物质水平之间的关系研究[J].现代检验医学杂志,2020,35(02):65.[doi:10.3969/j.issn.1671-7414.2020.02.019]
LIAO Yan-qiang.Relationship between Serum Cys C and Substance P Levels in Patientswith Diabetes Mellitus Complicated with Hypertension[J].Journal of Modern Laboratory Medicine,2020,35(06):65.[doi:10.3969/j.issn.1671-7414.2020.02.019]
[8]张海霞a,郭 杰a,袁 宁a,等.老年健康体检人群外周血红细胞分布宽度与糖化血红蛋白A1c 的相关性研究[J].现代检验医学杂志,2020,35(04):65.[doi:10.3969/j.issn.1671-7414.2020.04.016]
ZHANG Hai-xia a,GUO Jiea,YUAN Ninga,et al.Association of Peripheral Blood Red Blood Cell Distribution Width with Glycated Hemoglobin A1c in the Healthy Elderly Population for Check-ups[J].Journal of Modern Laboratory Medicine,2020,35(06):65.[doi:10.3969/j.issn.1671-7414.2020.04.016]
[9]赵淑珍,郑锦仁,陈媛,等.血清糖化清蛋白检测方法学评价、临床性能验证及其在糖尿病监测的应用研究[J].现代检验医学杂志,2020,35(05):77.[doi:10.3969/j.issn.1671-7414.2020.05.020]
ZHAO Shu-zhen,ZHENG Jin-ren,CHEN Yuan,et al.Application of Glycated Albumin in Diabetes Monitoring Indicators[J].Journal of Modern Laboratory Medicine,2020,35(06):77.[doi:10.3969/j.issn.1671-7414.2020.05.020]
[10]何晓一,刘彦君,庞晓宁,等.尿液 NGAL,Kim-1 及 CTGF 水平与糖尿病早期肾损伤的相关性研究[J].现代检验医学杂志,2021,36(03):76.[doi:10.3969/j.issn.1671-7414.2021.03.017]
HE Xiao-yia,LIU Yan-juna,PANG Xiao-ninga,et al.Research of the Correlation between the Levels of NGAL, Kim-1 andCTGF in Urine and Early Renal Injury in Diabetes Mellitus[J].Journal of Modern Laboratory Medicine,2021,36(06):76.[doi:10.3969/j.issn.1671-7414.2021.03.017]