[1]杨 阳,吕 幸,彭俊华.牛磺酸上调基因1 在糖尿病及其并发症中的研究进展[J].现代检验医学杂志,2022,37(06):198-204.[doi:10.3969/j.issn.1671-7414.2022.06.038]
 YANG Yang,L? Xing,PENG Jun-hua.Progress in Research of Taurine Up-regulated Gene 1 in Diabetes Mellitus and Its Complications[J].Journal of Modern Laboratory Medicine,2022,37(06):198-204.[doi:10.3969/j.issn.1671-7414.2022.06.038]
点击复制

牛磺酸上调基因1 在糖尿病及其并发症中的研究进展()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第37卷
期数:
2022年06期
页码:
198-204
栏目:
综述
出版日期:
2022-11-15

文章信息/Info

Title:
Progress in Research of Taurine Up-regulated Gene 1 in Diabetes Mellitus and Its Complications
文章编号:
1671-7414(2022)06-198-07
作者:
杨 阳吕 幸彭俊华
(江苏大学附属金坛第一人民医院检验科,江苏常州 213200)
Author(s):
YANG Yang L? Xing PENG Jun-hua
(Department of Clinical Laboratory, the Jintan First People’s Hospital Affiliated to Jiangsu University, Jiangsu Changzhou 213200, China)
关键词:
牛磺酸上调基因1糖尿病糖尿病肾病糖尿病视网膜病变诊疗靶点
分类号:
R587.2;R392.11
DOI:
10.3969/j.issn.1671-7414.2022.06.038
文献标志码:
A
摘要:
糖尿病是一种临床常见疾病,牛磺酸上调基因1(taurine up-regulated gene 1,TUG1) 参与细胞增殖、分化、凋亡、血管生成等过程。研究表明TUG1 调节胰岛细胞的增殖与凋亡,调节足细胞线粒体和内质网功能,影响糖尿病视网膜病变中细胞增殖迁移、小管形成和神经修复,参与糖尿病心脏病变中心肌纤维化和心脏功能的改变。外周血中TUG1基因类型和表达水平的改变影响糖尿病及其并发症的发生和治疗的有效性。为了进一步探讨TUG1 在糖尿病及其并发症的发病机制和临床诊疗靶点,该文综述了TUG1 在糖尿病及其并发症中的研究现状。
Abstract:
Diabetes mellitus (DM) is a common clinical disease, taurine up-regulated gene 1(TUG1) take part in many physiological processes, such as cell proliferation, cell differentiation, apoptosis and angiogenesis. Recent studies have found that TUG 1 regulates the proliferation and apoptosis of pancreatic islet cells, regulates the function of podocyte mitochondria and endoplasmic reticulum, influences the cell proliferation and migration, tubule formation and nerve repair in diabetes retinopathy, participates in the changes of myocardial fibrosis and cardiac function in diabetes heart disease. The occurrence and treatment effectiveness of diabetes and its complications is affected by the changes of TUG1 gene type and its expression level in peripheral blood. For further studies of TUG1 in the etiopathogenesis and clinical diagnosis and treatment target in diabetes and its complications, that paper reviews the research progress of TUG1 in diabetes and its complications.

参考文献/References:

[1] L?PEZ-NORIEGA L, RUTTER G A. Long non-coding RNAs as key modulators of pancreatic β-cell mass and function[J].Front Endocrinol (Lausanne). 2021,11:610213.
[2] DA Miao, ZHUANG Jing, ZHOU Yani, et al. Role of long noncoding RNA taurine-upregulated gene 1 in cancers[J]. Molecular Medicine (Cambridge, Mass.), 2021, 27(1): 51.
[3] 王东琴 , 霍浩然 , 秦瑞峰 , 等 . 胰腺癌患者血清 lncRNA-SNHG11的表达水平及其临床意义 [J]. 现代检验医学杂志 , 2022, 37(01): 125-129. WANG Dongqin, HUO Haoran, QIN Ruifeng, et al. Expression level of serum lncRNA-SNHG11 in patients with pancreatic cancer and its clinical significance [J]. Journal of Modern Laboratory Medicine, 2022, 37(1):125-129.
[4] 王月霞 , 马媛 , 底煜 . 长链非编码 RNA TUG1在血管相关疾病中的研究进展 [J]. 医学综述 , 2021, 27(21): 4171-4176. WANG Yuexia, MA Yuan, DI Yu. Research progress of long non-coding RNA TUG1 in vascular associated diseases [J]. Medical Recapitulate, 2021, 27(21) 4171-4176.
[5] BALIOU S, KYRIAKOPOULOS A M, SPANDIDOS D, et al. Role of taurine, its haloamines and its lncRNA TUG1 in both inflammation and cancer progression. On the road to therapeutics? (Review)[J]. International Journal of Oncology, 2020, 57(3): 631-664.
[6] YOUNG T L, MATSUDA T, CEPKO C L. The noncoding RNA taurine upregulated gene 1 is required for differentiation of the murine retina[J]. Current Biology, 2005, 15(6): 501-512.
[7] YIN Dandan, ZHANG Erbao, YOU Lianghui, et al. Downregulation of lncRNA TUG1 affects apoptosis and insulin secretion in mouse pancreatic β cells[J]. Cellular Physiology and Biochemistry, 2015, 35(5): 1892-1904.
[8] 付楚涵 , 陈敏 , 胡双海 , 等 .牛磺酸上调基因 1与疾病的关系 [J]. 中南大学学报 (医学版 ), 2020, 45(9): 1127-1135. FU Chuhan, CHEN Min, HU Shuanghai, et al. Taurine up-regulated gene 1 and disease development[J]. Journal of Central South University(Medical Science), 2020, 45(9): 1127-1135.
[9] TREWIN A J , SILVER J , DILLON H T , et al. Long non-coding RNA TUG1 modulates mitochondrial and myogenic responses to exercise in skeletal muscle[J]. BMC Biology, 2022, 20(1):164.
[10] LONG Jianyin, BADAL S S, YE Zengchun, et al. Long noncoding RNA TUG1 regulates mitochondrial bioenergetics in diabetic nephropathy[J]. Journal of Clinical Investigation, 2016, 126(11): 4205-4218.
[11] GU Wenchao, YUAN Yaping, WANG Linxuan, et al. Long non-coding RNA TUG1 promotes airway remodelling by suppressing the miR-145-5p/DUSP6 axis in cigarette smoke-induced COPD[J]. Journal of Cellular and Molecular Medicine, 2019, 23(11): 7200-7209.
[12] LI Yihui, DAI Chengting, YUAN Yi, et al. The mechanisms of lncRNA TUG1 in islet dysfunction in a mouse model of intrauterine growth retardation[J]. Cell Biochemistry Function, 2020, 38(8): 1129-1138.
[13] ZHANG P, LI Y N, TU S, et al. SP1-induced lncRNA TUG1 regulates proliferation and apoptosis in islet cells of type 2 diabetes mellitus via the miR-188-3p/FGF5 axis[J]. European Review for Medical and Pharmacological Sciences, 2021, 25(4): 1959-1966.
[14] WEI Weiwei, WANG Xingquan, WEI Yaqing, et al. LncRNA TUG1 protects intestinal epithelial cells from damage induced by high glucose and high fat via AMPK/SIRT1[J]. Molecular Medicine Reports, 2022, 25(4): 139.
[15] ZHANG Ying, MA Yuhang, GU Mingyu, et al. LncRNA TUG1 promotes the brown remodeling of white adipose tissue by regulating miR-204-targeted SIRT1 in diabetic mice[J]. International Journal of Molecular Medicine, 2020, 46(6): 2225-2234.
[16] MENG Dongdong, WU Lina, LI Zhifu, et al. LncRNA TUG1 ameliorates diabetic nephropathy via inhibition of PU.1/RTN1 signaling pathway[J]. Journal of Leukocyte Biology, 2022, 111(3): 553-562.
[17] 马媛 , 张大鹏 , 王想 , 等 . lncRNA TUG1对高糖诱导的小鼠足细胞 MPC5凋亡的影响 [J]. 郑州大学学报(医学版), 2019, 54(6): 863-866. MA Yuan, ZHANG Dapeng, WANG Xiang, et al. Effects of lncRNA TUG1 on high glucose-induced apoptosis of mouse podocyte MPC5 [J]. Journal of Zhengzhou University(Medical Sciences), 2019,54(6) 863-866.
[18] SHEN Hongchun, MING Yao, XU Chuanlan, et al. Deregulation of long noncoding RNA (TUG1) contributes to excessive podocytes apoptosis by activating endoplasmic reticulum stress in the development of diabetic nephropathy[J]. Journal of Cellular Physiology, 2019,234(9 Pt.1): 15123-15133.
[19] LEI Min, KE Guibao, WANG Yan, et al. Long non-coding RNA TUG1 sponges microRNA-9 to protect podocytes from high glucose-induced apoptosis and mitochondrial dysfunction via SIRT1 upregulation[J]. Experimental and Therapeutic Medicine, 2022, 23(3): 236.
[20] WANG Fei, GAO Xiangyang, ZHANG Rong, et al. LncRNA TUG1 ameliorates diabetic nephropathy by inhibiting miR-21 to promote TIMP3-expression[J]. International Journal of Clinical and Experimental Pathology, 2019, 12(3): 717-729.
[21] ZANG X J, LI L, DU X, et al. LncRNA TUG1 inhibits the proliferation and fibrosis of mesangial cells in diabetic nephropathy via inhibiting the PI3K/ AKT pathway[J]. European Review for Medical and Pharmacological Sciences, 2019, 23(17): 7519-7525.
[22] LONG Jianyin, GALVAN D L, MISE K, et al. Role for carbohydrate response element-binding protein (ChREBP) in high glucose-mediated repression of long noncoding RNA Tug1[J]. The Journal of Biological Chemistry, 2020, 295(47): 15840-15852.
[23] LI Li, LONG Jianyin, MISE K, et al. PGC1α is required for the renoprotective effect of lncRNA TUG1 in vivo and links TUG1 with urea cycle metabolites[J]. Cell Reports, 2021, 36(6): 109510.
[24] PETRICA L, HOGEA E, GADALEAN F, et al. Long noncoding RNAs may impact podocytes and proximal tubule function through modulating miRNAs expression in early diabetic kidney disease of type 2 diabetes mellitus patients[J]. International Journal of Medical Sciences, 2021, 18(10): 2093-2101.
[25] WANG Shaoqiang, YI Pengfei, WANG Na, et al. LncRNA TUG1/miR-29c-3p/SIRT1 axis regulates endoplasmic reticulum stress-mediated renal epithelial cells injury in diabetic nephropathy model in vitro[J]. PLoS One, 2021, 16(6): e0252761.
[26] 吴鹤 ,吴融花 .长链非编码 RNA牛磺酸上调基因 1靶向 miR-34a-5p/沉默信息调节因子 2相关酶 1对糖尿病肾脏疾病氧化应激损伤调控作用的研究 [J].中国糖尿病杂志 ,2021,29(8):620-628. WU He, WU Ronghua. LncRNA TUG1 targets miR-34a-5p/SIRT1 to regulate the oxidative stress in diabetic kidney disease [J]. Chinese Journal of Diabetes, 2021,29(8) 620-628.
[27] DUAN Lijun, DING Min, HOU Lijun, et al. Long noncoding RNA TUG1 alleviates extracellular matrix accumulation via mediating microRNA-377 targeting of PPARγ in diabetic nephropathy [J]. Biochemical and Biophysical Research Communications, 2017, 484(3): 598-604.
[28] SHI Qian, TANG Jinhua, WANG Minfeng, et al. Knockdown of long non-coding RNA TUG1 suppresses migration and tube formation in high Glucose-Stimulated human retinal microvascular endothelial cells by sponging miRNA-145[J]. Molecular Biotechnology, 2022, 64(2): 171-177.
[29] GONG Weifeng, LI Jie, ZHU Guangyue, et al. Chlorogenic acid relieved oxidative stress injury in retinal ganglion cells through IncRNA-TUG1/Nrf2[J]. Cell Cycle (Georgetown, Tex.), 2019, 18(14): 1549-1559.
[30] LAI Luying, WANG Yongwei, PENG Shenghui, et al. Bupivacaine induces ROS-dependent autophagic damage in DRG neurons via TUG1/mTOR in a high-glucose environment[J]. Neurotoxicity Research, 2022, 40(1): 111-126.
[31] YAN H Y, BU S Z, ZHOU W B, et al. TUG1 promotes diabetic atherosclerosis by regulating proliferation of endothelial cells via Wnt pathway[J]. European Review for Medical and Pharmacological Sciences, 2018, 22(20): 6922-6929.
[32] ZHAO Lei, LI Weiguo, ZHAO Hao. Inhibition of long non-coding RNA TUG1 protects against diabetic cardiomyopathy induced diastolic dysfunction by regulating miR-499-5p[J]. American Journal of Translational Research, 2020, 12(3): 718-730.
[33] ZHU Yun, FENG Zezhou, JIAN Zhao, et al. Long noncoding RNA TUG1 promotes cardiac fibroblast transformation to myofibroblasts via miR-29c in chronic hypoxia[J]. Molecular Medicine Reports, 2018, 18(3): 3451-3460.
[34] LI Yang, ZHI Kangkang, HAN Shilong, et al. TUG1 enhances high glucose-impaired endothelial progenitor cell function via miR-29c-3p/PDGF-BB/ Wnt signaling[J]. Stem Cell Research & Therapy, 2020, 11(1): 441.
[35] SU Manna, YU Tongxin, YU Yongyi, et al. LncRNA TUG1 and hsa_circ_0071106 can be combined as biomarkers in type 2 diabetes mellitus[J].Exp Biol Med (Maywood),2022 ,247(18):1609-1618.
[36] 徐兴燕 . 睡眠特征-长链非编码 RNA暴露与 2型糖尿病的关联研究 [D].福州:福建医科大学 ,2021. XU Xingyan. Study on the association of sleep characteristics- long non-coding RNA with type 2 diabetes mellitus [D]. Fuzhou:Fujian Medical University, 2021.
[37] 李一卉 , 孙璐 , 戴程婷 , 等 . 长链非编码 RNA TUG1/ MALAT1在 2型糖尿病患者外周血单个核细胞中的表达 [J]. 南京医科大学学报(自然科学版) , 2019, 39(4): 534-538. LI Yihui, SUN Lu, DAI Chengting, et al. Expression of long non-coding RNA TUG1/MALAT1 in peripheral blood mononuclear cells of type 2 diabetic patients [J]. Journal of Nanjing Medical University(Natural Sciences), 2019,39(4) 534-538.
[38] ABDELALEEM O O, SHAKER O G, MOHAMED M M, et al. Differential expression of serum TUG1, LINC00657, miR-9 and miR-106a in diabetic patients with and without ischemic stroke [J]. Frontiers in Molecular Bioscience, 2021,8:758742.
[39] 樊小宝 , 张蓬杰 , 王晓明 , 等 . 早期糖尿病肾病患者血清 LncRNA TUG1表达及临床意义 [J]. 中国中西医结合肾病杂志 , 2021, 22(11): 982-984. FAN Xiaobao, ZHANG Pengjie, WANG Xiaoming, et al. Expression and clinical significance of serum lncRNA TUG1 in patients with early diabetes nephropathy [J]. Chinese Journal of Integrated Traditional and Western Nephrology, 2021,22(11): 982-984.
[40] MOHAMMAD H M F, ABDELGHANY A A, AL AGEELI E,et al. Long non-coding RNAs gene variants as molecular markers for diabetic retinopathy risk and response to anti-VEGF therapy[J].Pharmgenomics Pers Med, 2021 , 14:997-1014.

相似文献/References:

[1]谭婷婷,程 莉,魏红霞,等.尿α1-酸性糖蛋白在早期糖尿病肾病诊断中的应用价值[J].现代检验医学杂志,2016,31(01):80.[doi:10.3969/j.issn.1671-7414.2016.01.023]
 TAN Ting-ting,CHENG Li,WEI Hong-xia,et al.Value of Urinary α1-Acid Glycoprotein in Early Diagnosis of Diabetic Nephropathy[J].Journal of Modern Laboratory Medicine,2016,31(06):80.[doi:10.3969/j.issn.1671-7414.2016.01.023]
[2]翟海军,朱 晶.NSE在糖尿病周围神经病变中的应用价值[J].现代检验医学杂志,2015,30(04):161.[doi:10.3969/j.issn.1671-7414.2015.04.050]
 ZHAI Hai-jun,ZHU Jing.Application of NSE in Diabetic Peripheral Neuropathy[J].Journal of Modern Laboratory Medicine,2015,30(06):161.[doi:10.3969/j.issn.1671-7414.2015.04.050]
[3]詹 颉,张 华,闫福堂,等.血清NGAL与Cr,BUN,RBP,Cys-C联合检测在糖尿病肾病早期诊断中的应用[J].现代检验医学杂志,2016,31(04):100.[doi:10.3969/j.issn.16717-414.2016.04.028]
 ZHAN Jie,ZHANG Hua,YAN Fu-tang,et al.Application of Combined Detection of Serum NGAL and Cr,BUN,RBP and Cys C in Early Diagnosis of Diabetic Nephropathy[J].Journal of Modern Laboratory Medicine,2016,31(06):100.[doi:10.3969/j.issn.16717-414.2016.04.028]
[4]王洋一,胡宏章.在不同性别及年龄间糖化血红蛋白水平差异分析[J].现代检验医学杂志,2017,32(02):123.[doi:10.3969/j.issn.1671-7414.2017.02.034]
 WANG Yang-yi,HU Hong-zhang.Differential Analysis of Glycosylated Hemoglobin in Different Sex and Age[J].Journal of Modern Laboratory Medicine,2017,32(06):123.[doi:10.3969/j.issn.1671-7414.2017.02.034]
[5]严海忠,王 娟,卢兰芬,等.糖尿病患者感染产ESBLs肠杆菌科细菌的耐药性及危险因素分析[J].现代检验医学杂志,2018,33(05):82.[doi:10.3969/j.issn.1671-7414.2018.05.022]
 YAN Hai-zhong,WANG Juan,LU Lan-fen,et al.Analysis of the Drug Resistance and Risk Factors of ESBLs-Producing Enterobacteriaceae Infection in Diabetics[J].Journal of Modern Laboratory Medicine,2018,33(06):82.[doi:10.3969/j.issn.1671-7414.2018.05.022]
[6]张求霞a,汪隆海a,昌国庆a,等.尿液6种蛋白与CysC水平检测对糖尿病肾病的诊断价值[J].现代检验医学杂志,2019,34(01):67.[doi:10.3969/j.issn.1671-7414.2019.01.017]
 ZHANG Qiu-xiaa,WANG Long-haia,CHANG Guo-qing a,et al.Clinical Value of Detection of 6 Proteins and Cystatin C in Urine for Early Diagnosis of Diabetic Kidney Disease[J].Journal of Modern Laboratory Medicine,2019,34(06):67.[doi:10.3969/j.issn.1671-7414.2019.01.017]
[7]廖衍强.糖尿病并发高血压患者血清Cys C 与P 物质水平之间的关系研究[J].现代检验医学杂志,2020,35(02):65.[doi:10.3969/j.issn.1671-7414.2020.02.019]
 LIAO Yan-qiang.Relationship between Serum Cys C and Substance P Levels in Patientswith Diabetes Mellitus Complicated with Hypertension[J].Journal of Modern Laboratory Medicine,2020,35(06):65.[doi:10.3969/j.issn.1671-7414.2020.02.019]
[8]张海霞a,郭 杰a,袁 宁a,等.老年健康体检人群外周血红细胞分布宽度与糖化血红蛋白A1c 的相关性研究[J].现代检验医学杂志,2020,35(04):65.[doi:10.3969/j.issn.1671-7414.2020.04.016]
 ZHANG Hai-xia a,GUO Jiea,YUAN Ninga,et al.Association of Peripheral Blood Red Blood Cell Distribution Width with Glycated Hemoglobin A1c in the Healthy Elderly Population for Check-ups[J].Journal of Modern Laboratory Medicine,2020,35(06):65.[doi:10.3969/j.issn.1671-7414.2020.04.016]
[9]赵淑珍,郑锦仁,陈媛,等.血清糖化清蛋白检测方法学评价、临床性能验证及其在糖尿病监测的应用研究[J].现代检验医学杂志,2020,35(05):77.[doi:10.3969/j.issn.1671-7414.2020.05.020]
 ZHAO Shu-zhen,ZHENG Jin-ren,CHEN Yuan,et al.Application of Glycated Albumin in Diabetes Monitoring Indicators[J].Journal of Modern Laboratory Medicine,2020,35(06):77.[doi:10.3969/j.issn.1671-7414.2020.05.020]
[10]何晓一,刘彦君,庞晓宁,等.尿液 NGAL,Kim-1 及 CTGF 水平与糖尿病早期肾损伤的相关性研究[J].现代检验医学杂志,2021,36(03):76.[doi:10.3969/j.issn.1671-7414.2021.03.017]
 HE Xiao-yia,LIU Yan-juna,PANG Xiao-ninga,et al.Research of the Correlation between the Levels of NGAL, Kim-1 andCTGF in Urine and Early Renal Injury in Diabetes Mellitus[J].Journal of Modern Laboratory Medicine,2021,36(06):76.[doi:10.3969/j.issn.1671-7414.2021.03.017]

备注/Memo

备注/Memo:
基金项目:常州市科技支撑(社会发展) 计划(编号:CE20185004)。
作者简介:杨阳(1986-),女,硕士,主管技师,研究方向:临床免疫及代谢性疾病,E-mail:vipyyang@126.com。
通讯作者:彭俊华(1966-),男,博士,主任医师,E-mail:junhua_p@126.com。
更新日期/Last Update: 2022-11-15