[1]李青松,赵聪平,刘 静,等.CRISPR-Cas13a 系统在病原体检测应用中的最新研究进展[J].现代检验医学杂志,2024,39(03):199-204.[doi:10.3969/j.issn.1671-7414.2024.03.034]
 LI Qingsong,ZHAO Congping,LIU Jing,et al.Recent Advances in the Application of CRISPR-Cas13a Systems in Pathogen Detection[J].Journal of Modern Laboratory Medicine,2024,39(03):199-204.[doi:10.3969/j.issn.1671-7414.2024.03.034]
点击复制

CRISPR-Cas13a 系统在病原体检测应用中的最新研究进展()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第39卷
期数:
2024年03期
页码:
199-204
栏目:
综述
出版日期:
2024-05-15

文章信息/Info

Title:
Recent Advances in the Application of CRISPR-Cas13a Systems in Pathogen Detection
文章编号:
1671-7414(2024)03-199-06
作者:
李青松1赵聪平1刘 静1杨 均2燕思羽1张银河3
(1. 西南医科大学公共卫生学院,四川泸州646000;2. 泸州市人民医院,四川泸州 646000;3. 太极集团重庆涪陵制药厂有限责任公司,重庆 408000)
Author(s):
LI Qingsong1ZHAO Congping1LIU Jing1YANG Jun2YAN Siyu1ZHANG Yinhe3
(1. School of Public Health,Southwest Medical University, Sichuan Luzhou 646000, China; 2. Luzhou People’s Hospital, Sichuan Luzhou 646000, China; 3. Taiji Group Chongqing Fuling Pharmaceutical Co. Ltd., Chongqing 408000, China)
关键词:
规律成簇的间隔短回文重复序列及相关蛋白13a 系统病原体核酸检测
分类号:
R446;
DOI:
10.3969/j.issn.1671-7414.2024.03.034
文献标志码:
A
摘要:
规律成簇的间隔短回文重复序列及相关蛋白(CRISPR-Cas)系统已作为近年来兴起的新一代分子诊断工具,被广泛应用于基因编辑、核酸检测等领域,其中Cas13a 亚型因其在核酸检测中高特异度、高灵敏度、无需昂贵设备、操作简单、费用低廉等特点,在病原体检测领域展现出巨大的潜力。该文综述了CRISPR-Cas13a 的作用机制、在病原体检测中的应用以及相关检测方法,并对Cas13a 应用前景进行了展望。以期为CRISPR-Cas13a 系统的进一步研究及其在病原体检测中的应用提供借鉴和参考。
Abstract:
As a new generation of molecular diagnostic tools emerged in recent years, the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR-Cas) systems have been widely used in gene editing, nucleic acid detection, and other fields. Due to its high specificity, high sensitivity, without expensive equipment, simple operation, and inexpensive characteristics in nucleic acid detection, the Cas13a subtype has shown great potential in the field of pathogen detection. This article reviews the mechanism of action of CRISPR-Cas13a, its application in pathogen detection, and related detection methods, and looks forward to the application prospects of Cas13a. To facilitate future investigations on the CRISPR-Cas13a systems and their potential in pathogen detection, this study aims to offer inspiration and serve as a valuable reference.

参考文献/References:

[1] ISHINO Y, KRUPOVIC M, FORTERRE P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology[J].Journal of Bacteriology, 2018, 200(7): e00580-17.
[2] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012,337(6096): 816-821.
[3] KELLNER M J, KOOB J G, GOOTENBERG J S, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases[J]. Nature Protocols, 2019, 14(10): 2986-3012.
[4] WIEDENHEFT B, STERNBERG S H, DOUDNA J A. RNA-guided genetic silencing systems in bacteria and archaea[J]. Nature, 2012, 482(7385): 331-338.
[5] MAKAROVA K S, WOLF Y I, IRANZO J, et al. Evolutionary classification of CRISPR-Cas systems:a burst of class 2 and derived variants[J]. Nature Reviews Microbiology, 2020, 18(2): 67-83.
[6] MAKAROVA K S, ZHANG Feng, KOONIN E V. SnapShot: class 2 CRISPR-Cas systems[J]. Cell, 2017,168(1/2): 328.e1.
[7] 冯江浩, 魏思昂, 闫丽欢, 等. CRISPR/Cas9 基因编辑技术及应用研究概述[J]. 动物医学进展, 2021,42(3): 123-126. FENG Jianghao, WEI Siang, YAN Lihuan, et al. Progress on gene editing technology and application of CRISPR/Cas9[J]. Progress in Veterinary Medicine,2021, 42(3): 123-126.
[8] YAN W X, HUNNEWELL P, ALFONSE L E, et al. Functionally diverse type V CRISPR-Cas systems[J].Science, 2019, 363(6422): 88-91.
[9] MAO Zefeng, CHEN Ruipeng, WANG Xiaojuan, et al. CRISPR/Cas12a-based technology: a powerful tool for biosensing in food safety[J]. Trends in Food Science & Technology, 2022, 122: 211-222.
[10] ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J].Science, 2016, 353(6299): aaf5573.
[11] ZHANG Ting, ZHOU Wenhu, LIN Xiaoya, et al. Lightup RNA aptamer signaling-CRISPR-Cas13a-based mix-and-read assays for profiling viable pathogenic bacteria[J]. Biosensors & Bioelectronics, 2021, 176:112906.
[12] 王雅轩, 朱晓雁, 苏建荣. CRISPR/Cas 系统在病原体检测方面的研究进展[J]. 中国人兽共患病学报,2021, 37(9): 839-844. WANG Yaxuan, ZHU Xiaoyan, SU Jianrong. Research progress on the CRISPR/Cas system in pathogen detection[J]. Chinese Journal of Zoonoses, 2021, 37(9):839-844.
[13] LIU Liang, LI Xueyan, MA Jun, et al. The molecular architecture for RNA-Guided RNA cleavage by Cas13a[J]. Cell, 2017, 170(4): 714-726, e10.
[14] O’CONNELL M R. Molecular mechanisms of RNA targeting by Cas13-containing type VI CRISPR-Cas systems[J]. Journal of Molecular Biology, 2019, 431(1):66-87.
[15] WAN Hua, LI Jianming, CHANG Shan, et al. Probing the behaviour of Cas1-Cas2 upon protospacer binding in CRISPR-Cas systems using molecular dynamics simulations[J]. Scientific Reports, 2019, 9(1): 3188.
[16] EAST-SELETSKY A, O’CONNELL M R, KNIGHT S C, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection[J].Nature, 2016, 538(7624): 270-273.
[17] YAN C, CUI J, HUANG L, et al. Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay[J]. Clinical Microbiology and Infection, 2020, 26(6): 773-779.
[18] GUPTA R, KAZI T A, DEY D, et al. CRISPR detectives against SARS-CoV-2:a major setback against COVID-19 blowout[J]. Applied Microbiology and Biotechnology, 2021, 105(20): 7593-7605.
[19] ZHANG Qin, LI Jiahao, LI Yue, et al. SARS-CoV-2 detection using quantum dot fluorescence immunochromatography combined with isothermal amplification and CRISPR/Cas13a[J]. Biosensors & Bioelectronics,2022, 202: 113978.
[20] WANG Yuxi, XUE Ting, WANG Minjin, et al. CRISPR-Cas13a cascade-based viral RNA assay for detecting SARS-CoV-2 and its mutations in clinical samples[J]. Sensors and Actuators. B, Chemical, 2022,362: 131765.
[21] CHUNG H W. Reverse transcriptase PCR (RTPCR) and quantitative-competitive PCR (QC-PCR)[J]. Experimental & Molecular Medicine, 2001, 33(1Suppl): 85-97.
[22] 唐月明, 伊洁. 数字聚合酶链反应(dPCR) 技术在病原体基因检测应用中的研究进展[J]. 现代检验医学杂志, 2021, 36(5): 174-179. TANG Yueming, YI Jie. Recent advances in research on digital polymerase chain reaction (dPCR) in pathogen gene detection[J]. Journal of Modern Laboratory Medicine, 2021, 36(5): 174-179.
[23] GAO Song, LIU Jingwen, LI Zhiyong, et al. Sensitive detection of foodborne pathogens based on CRISPRCas13a[J]. Journal of Food Science, 2021, 86(6): 2615-2625.
[24] 于佳佳, 张旭霞, 张雨晴, 等. PCR 扩增技术联合CRISPR-Cas13a 系统对MTB DNA 检测方法的初步研究[J]. 中国防痨杂志, 2020, 42(12): 1280-1288. YU Jiajia, ZHANG Xuxia, ZHANG Yuqing, et al. Preliminary study on detection method of MTB DNA by PCR amplification combined with CRISPR-Cas13a system[J]. Chinese Journal of Antituberculosis, 2020,42(12): 1280-1288.
[25] WANG Yaxuan, LIU Liyang, LIU Xiaochuan, et al. An ultrasensitive PCR-based CRISPR-Cas13a method for the detection of Helicobacter pylori[J]. Journal of Personalized Medicine, 2022, 12(12): 2082.
[26] 李秋馨, 付玉梅, 梁志舜, 等. 5 种幽门螺杆菌检测方法的比较[J]. 现代检验医学杂志, 2015, 30(5):127-128, 131. LI Qiuxin, FU Yumei, LIANG Zhishun, et al. Comparison of 5 kinds of detection methods for Helicobacter pylori[J]. Journal of Modern Laboratory Medicine, 2015, 30(5): 127-128, 131.
[27] 任锋, 张向颖, 田原, 等.基于RCA-PCR-CRISPR-cas13a检测HBV cccDNA 的试剂盒: CN202110200329. 2 [P].2022-08-30. REN Feng, ZHANG Xiangying, TIAN Yuan, et al. A test kit for detecting HBV cccDNA based on RCAPCR-CRISPR-cas13a: CN202110200329.2 [P]. 2022-08-30.
[28] WANG S, LI H, KOU Z, et al. Highly sensitive and specific detection of hepatitis B virus DNA and drug resistance mutations utilizing the PCR-based CRISPRCas13a system[J]. Clinical Microbiology and Infection Diseases, 2021, 27(3): 443-450.
[29] AMAN R, MAHAS A, MAHFOUZ M. Nucleic acid detection using CRISPR/Cas biosensing technologies[J]. ACS Synthetic Biology, 2020, 9(6):1226-1233.
[30] GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J].Science, 2018, 360(6387): 439-444.
[31] MYHRVOLD C, FREIJE C A, GOOTENBERG J S, et al. Field-deployable viral diagnostics using CRISPRCas13[J]. Science, 2018, 360(6387): 444-448.
[32] TIAN Tian, QIU Zhiqiang, JIANG Yongzhong, et al. Exploiting the orthogonal CRISPR-Cas12a/Cas13a trans-cleavage for dual-gene virus detection using a handheld device[J]. Biosensors & Bioelectronics, 2022,196: 113701.
[33] CUI J Q, LIU F X, PARK H, et al. Droplet digital recombinase polymerase amplification (ddRPA) reaction unlocking via picoinjection[J]. Biosensors & Bioelectronics, 2022, 202: 114019.
[34] HU Fei, LIU Yanfei, ZHAO Shuhao, et al. A one-pot CRISPR/Cas13a-based contamination-free biosensor for low-cost and rapid nucleic acid diagnostics[J].Biosensors & Bioelectronics, 2022, 202: 113994.
[35] WANG Jiaojiao, XIA Qianfeng, WU Jie, et al. A sensitive electrochemical method for rapid detection of dengue virus by CRISPR/Cas13a-assisted catalytic hairpin assembly[J]. Analytica Chimica Acta, 2021,1187: 339131.
[36] 符汪洋, 秦怡, 经求是, 等. 基于CRISPR-Cas 反式切割和gFET 核酸检测: CN202111543506.3 [P]2022-03-08. FU Wangyang, QIN Yi, JING Qiushi, et al. Based on CRISPR-Cas transcleavage and gFET nucleic acid detection: CN202111543506.3 [P] 2022-03-08.
[37] ORTIZ-CARTAGENA C, FERN?NDEZ-GARC?A L,BLASCO L, et al. Reverse transcription-loop-mediated isothermal amplification-CRISPR-Cas13a technology as a promising diagnostic tool for SARS-CoV-2[J].Microbiology Spectrum, 2022, 10(5):e0239822.
[38] ACKERMAN C M, MYHRVOLD C, THAKKU S G,et al. Massively multiplexed nucleic acid detection with Cas13[J]. Nature, 2020, 582(7811): 277-282.
[39] 中华人民共和国国家卫生健康委员会. 新型冠状病毒感染诊疗方案(试行第十版)[J]. 中华临床感染病杂志, 2023, 16(1): 1-9. National Health Commission of the People’s Republic of China. Diagnosis and treatment plan for COVID-19(trial version 10) [J]. Chinese Journal of Clinical Infectious Diseases, 2023, 16(1): 1-9.
[40] SCHURR F, TISON A, MILITANO L, et al. Validation of quantitative real-time RT-PCR assays for the detection of six honeybee viruses[J]. Journal of Virological Methods, 2019, 270: 70-78.
[41] HE Dalin, LIU Gang, YANG Jing, et al. Specific highsensitivity enzymatic molecular detection system termed RPA-Based CRISPR-Cas13a for duck tembusu virus diagnostics[J]. Bioconjugate Chemistry, 2022,33(6): 1232-1240.
[42] CHANG Yafei, DENG Yue, LI Tianyu, et al. Visual detection of porcine reproductive and respiratory syndrome virus using CRISPR-Cas13a[J]. Transboundary and Emerging Diseases, 2020, 67(2): 564-571.
[43] YIN Dongdong, YIN Lei, GUO Hao, et al. Visual detection and differentiation of porcine epidemic diarrhea virus wild-type strains and attenuated vaccine strains using CRISPR/Cas13a-based lateral flow strip[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 976137.
[44] QIN Peiwu, PARK M, ALFSON K J, et al. Rapid and fully microfluidic Ebola virus detection with CRISPRCas13a[J]. ACS Sensors, 2019, 4(4): 1048-1054.
[45] ZHANG Xiangying, TIAN Yuan, XU Ling, et al. CRISPR/Cas13-assisted hepatitis B virus covalently closed circular DNA detection[J]. Hepatology International, 2022, 16(2): 306-315.
[46] 蒋远东, 腾子豪, 王玥, 等. 1990-2019 年中国结核病发病趋势的年龄- 时期- 队列模型分析[J]. 中华疾病控制杂志, 2022, 26(11): 1275-1282. JIANG Yuandong, TENG Zihao, WANG Yue, et al. Trend of tuberculosis incidence in China from 1990 to 2019 based on the age-period-cohort model [J]. Chinese Journal of Disease Control & Prevention, 2022, 26(11):1275-1282.
[47] ZHOU Jin, YIN Lijuan, DONG Yanan, et al. CRISPRCas13a based bacterial detection platform: sensing pathogen Staphylococcus aureus in food samples[J].Analytica Chimica Acta, 2020, 1127: 225-233.
[48] SHEN Jinjin, ZHOU Xiaoming, SHAN Yuanyue, et al. Sensitive detection of a bacterial pathogen using allosteric probe-initiated catalysis and CRISPR-Cas13a amplification reaction[J]. Nature Communications,2020, 11(1): 267.
[49] XIANG Xinran , LI Fan , YE Qingping ,et al.Highthroughput microfluidic strategy based on RAACRISPR/Cas13a dual signal amplification for accurate identification of pathogenic Listeria[J].Sensors and Actuators B: Chemical, 2022, 358: 131517.
[50] 安柏霖, 苏璇, 郭悦, 等. 重组酶介导的等温扩增技术联合CRISPR-Cas13a 快速检测4 种腹泻病原菌[J].中国食品卫生杂志, 2023, 35(3): 381-389. AN Bailin, SU Xuan, GUO Yue, et al. Rapid detection of four diarrheal bacteria by CRISPR-Cas13a combined with recombinase aided amplification [J]. Chinese Journal of Food Hygiene, 2023, 35(3): 381-389.
[51] HUANG Kaichen, YU Hailing, CHEN Zhenhua,et al. CRISPR-Cas13a-based diagnostic method for Chlamydia trachomatis from nongonococcal urethritis[J]. Bioanalysis, 2021, 13(11): 901-912.
[52] CHEN Wentao, LUO Hao, ZENG Lihong, et al. A suite of PCR-LwCas13a assays for detection and genotyping of Treponema pallidum in clinical samples[J]. Nature Communications, 2022, 13(1): 4671.
[53] ZHAO Jinhong, LI Yuanyuan, XUE Qiqi, et al. A novel rapid visual detection assay for Toxoplasma gondii combining recombinase-aided amplification and lateral flow dipstick coupled with CRISPR-Cas13a fluorescence (RAA-Cas13a-LFD)[J]. Parasite, 2022,29∶21.
[54] ZHAN Yangqing, GAO Xiaoqing, LI Shaoqiang,et al. Development and evaluation of rapid and accurate CRISPR/Cas13-based RNA diagnostics for Pneumocystis jirovecii pneumonia[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12:904485.

相似文献/References:

[1]余成强,王启明,何家花,等.陕西省商洛市儿童呼吸道感染病原体血清流行病学研究[J].现代检验医学杂志,2019,34(06):142.[doi:10.3969 / j.issn.1671-7414.2019.06.036]
 YU Cheng-qiang,WANG Qi-ming,HE Jia-hua,et al.Seroepidemiological Study on Pathogens of Respiratory Tract Infection in Children in Shangluo, Shaanxi[J].Journal of Modern Laboratory Medicine,2019,34(03):142.[doi:10.3969 / j.issn.1671-7414.2019.06.036]
[2]翟励敏,王碧玉,初礼巍,等.广西桂林地区儿童9 种呼吸道病原体感染的检测结果分析[J].现代检验医学杂志,2020,35(05):147.[doi:10.3969/j.issn.1671-7414.2020.05.038]
 ZHAI Li-min,WANG Bi-yu,CHU Li-wei,et al.Study on the Results of Nine Respiratory Tract Pathogens Infection in Children in Guilin, Guangxi[J].Journal of Modern Laboratory Medicine,2020,35(03):147.[doi:10.3969/j.issn.1671-7414.2020.05.038]
[3]唐月明,伊 洁.数字聚合酶链反应(dPCR)技术在病原体基因检测应用中的研究进展[J].现代检验医学杂志,2021,36(05):174.[doi:10.3969/j.issn.1671-7414.2021.05.038]
 TANG Yue-ming,YI Jie.Recent Advances in Research on Digital Polymerase ChainReaction(dPCR) in Pathogen Gene Detection[J].Journal of Modern Laboratory Medicine,2021,36(03):174.[doi:10.3969/j.issn.1671-7414.2021.05.038]

备注/Memo

备注/Memo:
基金项目:西南医科大学应用基础项目(NO. 2021ZKQN002)。
作者简介:李青松(2001-),男,本科在读,主要研究方向:病原体检测,E-mail: 17380784728@163.com。
通讯作者:刘静,博士,讲师,主要从事荧光传感检测的研究,E-mail: liujing.1583@163.com。
更新日期/Last Update: 2024-05-15