参考文献/References:
[1] ISHINO Y, KRUPOVIC M, FORTERRE P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology[J].Journal of Bacteriology, 2018, 200(7): e00580-17.
[2] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012,337(6096): 816-821.
[3] KELLNER M J, KOOB J G, GOOTENBERG J S, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases[J]. Nature Protocols, 2019, 14(10): 2986-3012.
[4] WIEDENHEFT B, STERNBERG S H, DOUDNA J A. RNA-guided genetic silencing systems in bacteria and archaea[J]. Nature, 2012, 482(7385): 331-338.
[5] MAKAROVA K S, WOLF Y I, IRANZO J, et al. Evolutionary classification of CRISPR-Cas systems:a burst of class 2 and derived variants[J]. Nature Reviews Microbiology, 2020, 18(2): 67-83.
[6] MAKAROVA K S, ZHANG Feng, KOONIN E V. SnapShot: class 2 CRISPR-Cas systems[J]. Cell, 2017,168(1/2): 328.e1.
[7] 冯江浩, 魏思昂, 闫丽欢, 等. CRISPR/Cas9 基因编辑技术及应用研究概述[J]. 动物医学进展, 2021,42(3): 123-126. FENG Jianghao, WEI Siang, YAN Lihuan, et al. Progress on gene editing technology and application of CRISPR/Cas9[J]. Progress in Veterinary Medicine,2021, 42(3): 123-126.
[8] YAN W X, HUNNEWELL P, ALFONSE L E, et al. Functionally diverse type V CRISPR-Cas systems[J].Science, 2019, 363(6422): 88-91.
[9] MAO Zefeng, CHEN Ruipeng, WANG Xiaojuan, et al. CRISPR/Cas12a-based technology: a powerful tool for biosensing in food safety[J]. Trends in Food Science & Technology, 2022, 122: 211-222.
[10] ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J].Science, 2016, 353(6299): aaf5573.
[11] ZHANG Ting, ZHOU Wenhu, LIN Xiaoya, et al. Lightup RNA aptamer signaling-CRISPR-Cas13a-based mix-and-read assays for profiling viable pathogenic bacteria[J]. Biosensors & Bioelectronics, 2021, 176:112906.
[12] 王雅轩, 朱晓雁, 苏建荣. CRISPR/Cas 系统在病原体检测方面的研究进展[J]. 中国人兽共患病学报,2021, 37(9): 839-844. WANG Yaxuan, ZHU Xiaoyan, SU Jianrong. Research progress on the CRISPR/Cas system in pathogen detection[J]. Chinese Journal of Zoonoses, 2021, 37(9):839-844.
[13] LIU Liang, LI Xueyan, MA Jun, et al. The molecular architecture for RNA-Guided RNA cleavage by Cas13a[J]. Cell, 2017, 170(4): 714-726, e10.
[14] O’CONNELL M R. Molecular mechanisms of RNA targeting by Cas13-containing type VI CRISPR-Cas systems[J]. Journal of Molecular Biology, 2019, 431(1):66-87.
[15] WAN Hua, LI Jianming, CHANG Shan, et al. Probing the behaviour of Cas1-Cas2 upon protospacer binding in CRISPR-Cas systems using molecular dynamics simulations[J]. Scientific Reports, 2019, 9(1): 3188.
[16] EAST-SELETSKY A, O’CONNELL M R, KNIGHT S C, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection[J].Nature, 2016, 538(7624): 270-273.
[17] YAN C, CUI J, HUANG L, et al. Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay[J]. Clinical Microbiology and Infection, 2020, 26(6): 773-779.
[18] GUPTA R, KAZI T A, DEY D, et al. CRISPR detectives against SARS-CoV-2:a major setback against COVID-19 blowout[J]. Applied Microbiology and Biotechnology, 2021, 105(20): 7593-7605.
[19] ZHANG Qin, LI Jiahao, LI Yue, et al. SARS-CoV-2 detection using quantum dot fluorescence immunochromatography combined with isothermal amplification and CRISPR/Cas13a[J]. Biosensors & Bioelectronics,2022, 202: 113978.
[20] WANG Yuxi, XUE Ting, WANG Minjin, et al. CRISPR-Cas13a cascade-based viral RNA assay for detecting SARS-CoV-2 and its mutations in clinical samples[J]. Sensors and Actuators. B, Chemical, 2022,362: 131765.
[21] CHUNG H W. Reverse transcriptase PCR (RTPCR) and quantitative-competitive PCR (QC-PCR)[J]. Experimental & Molecular Medicine, 2001, 33(1Suppl): 85-97.
[22] 唐月明, 伊洁. 数字聚合酶链反应(dPCR) 技术在病原体基因检测应用中的研究进展[J]. 现代检验医学杂志, 2021, 36(5): 174-179. TANG Yueming, YI Jie. Recent advances in research on digital polymerase chain reaction (dPCR) in pathogen gene detection[J]. Journal of Modern Laboratory Medicine, 2021, 36(5): 174-179.
[23] GAO Song, LIU Jingwen, LI Zhiyong, et al. Sensitive detection of foodborne pathogens based on CRISPRCas13a[J]. Journal of Food Science, 2021, 86(6): 2615-2625.
[24] 于佳佳, 张旭霞, 张雨晴, 等. PCR 扩增技术联合CRISPR-Cas13a 系统对MTB DNA 检测方法的初步研究[J]. 中国防痨杂志, 2020, 42(12): 1280-1288. YU Jiajia, ZHANG Xuxia, ZHANG Yuqing, et al. Preliminary study on detection method of MTB DNA by PCR amplification combined with CRISPR-Cas13a system[J]. Chinese Journal of Antituberculosis, 2020,42(12): 1280-1288.
[25] WANG Yaxuan, LIU Liyang, LIU Xiaochuan, et al. An ultrasensitive PCR-based CRISPR-Cas13a method for the detection of Helicobacter pylori[J]. Journal of Personalized Medicine, 2022, 12(12): 2082.
[26] 李秋馨, 付玉梅, 梁志舜, 等. 5 种幽门螺杆菌检测方法的比较[J]. 现代检验医学杂志, 2015, 30(5):127-128, 131. LI Qiuxin, FU Yumei, LIANG Zhishun, et al. Comparison of 5 kinds of detection methods for Helicobacter pylori[J]. Journal of Modern Laboratory Medicine, 2015, 30(5): 127-128, 131.
[27] 任锋, 张向颖, 田原, 等.基于RCA-PCR-CRISPR-cas13a检测HBV cccDNA 的试剂盒: CN202110200329. 2 [P].2022-08-30. REN Feng, ZHANG Xiangying, TIAN Yuan, et al. A test kit for detecting HBV cccDNA based on RCAPCR-CRISPR-cas13a: CN202110200329.2 [P]. 2022-08-30.
[28] WANG S, LI H, KOU Z, et al. Highly sensitive and specific detection of hepatitis B virus DNA and drug resistance mutations utilizing the PCR-based CRISPRCas13a system[J]. Clinical Microbiology and Infection Diseases, 2021, 27(3): 443-450.
[29] AMAN R, MAHAS A, MAHFOUZ M. Nucleic acid detection using CRISPR/Cas biosensing technologies[J]. ACS Synthetic Biology, 2020, 9(6):1226-1233.
[30] GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J].Science, 2018, 360(6387): 439-444.
[31] MYHRVOLD C, FREIJE C A, GOOTENBERG J S, et al. Field-deployable viral diagnostics using CRISPRCas13[J]. Science, 2018, 360(6387): 444-448.
[32] TIAN Tian, QIU Zhiqiang, JIANG Yongzhong, et al. Exploiting the orthogonal CRISPR-Cas12a/Cas13a trans-cleavage for dual-gene virus detection using a handheld device[J]. Biosensors & Bioelectronics, 2022,196: 113701.
[33] CUI J Q, LIU F X, PARK H, et al. Droplet digital recombinase polymerase amplification (ddRPA) reaction unlocking via picoinjection[J]. Biosensors & Bioelectronics, 2022, 202: 114019.
[34] HU Fei, LIU Yanfei, ZHAO Shuhao, et al. A one-pot CRISPR/Cas13a-based contamination-free biosensor for low-cost and rapid nucleic acid diagnostics[J].Biosensors & Bioelectronics, 2022, 202: 113994.
[35] WANG Jiaojiao, XIA Qianfeng, WU Jie, et al. A sensitive electrochemical method for rapid detection of dengue virus by CRISPR/Cas13a-assisted catalytic hairpin assembly[J]. Analytica Chimica Acta, 2021,1187: 339131.
[36] 符汪洋, 秦怡, 经求是, 等. 基于CRISPR-Cas 反式切割和gFET 核酸检测: CN202111543506.3 [P]2022-03-08. FU Wangyang, QIN Yi, JING Qiushi, et al. Based on CRISPR-Cas transcleavage and gFET nucleic acid detection: CN202111543506.3 [P] 2022-03-08.
[37] ORTIZ-CARTAGENA C, FERN?NDEZ-GARC?A L,BLASCO L, et al. Reverse transcription-loop-mediated isothermal amplification-CRISPR-Cas13a technology as a promising diagnostic tool for SARS-CoV-2[J].Microbiology Spectrum, 2022, 10(5):e0239822.
[38] ACKERMAN C M, MYHRVOLD C, THAKKU S G,et al. Massively multiplexed nucleic acid detection with Cas13[J]. Nature, 2020, 582(7811): 277-282.
[39] 中华人民共和国国家卫生健康委员会. 新型冠状病毒感染诊疗方案(试行第十版)[J]. 中华临床感染病杂志, 2023, 16(1): 1-9. National Health Commission of the People’s Republic of China. Diagnosis and treatment plan for COVID-19(trial version 10) [J]. Chinese Journal of Clinical Infectious Diseases, 2023, 16(1): 1-9.
[40] SCHURR F, TISON A, MILITANO L, et al. Validation of quantitative real-time RT-PCR assays for the detection of six honeybee viruses[J]. Journal of Virological Methods, 2019, 270: 70-78.
[41] HE Dalin, LIU Gang, YANG Jing, et al. Specific highsensitivity enzymatic molecular detection system termed RPA-Based CRISPR-Cas13a for duck tembusu virus diagnostics[J]. Bioconjugate Chemistry, 2022,33(6): 1232-1240.
[42] CHANG Yafei, DENG Yue, LI Tianyu, et al. Visual detection of porcine reproductive and respiratory syndrome virus using CRISPR-Cas13a[J]. Transboundary and Emerging Diseases, 2020, 67(2): 564-571.
[43] YIN Dongdong, YIN Lei, GUO Hao, et al. Visual detection and differentiation of porcine epidemic diarrhea virus wild-type strains and attenuated vaccine strains using CRISPR/Cas13a-based lateral flow strip[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 976137.
[44] QIN Peiwu, PARK M, ALFSON K J, et al. Rapid and fully microfluidic Ebola virus detection with CRISPRCas13a[J]. ACS Sensors, 2019, 4(4): 1048-1054.
[45] ZHANG Xiangying, TIAN Yuan, XU Ling, et al. CRISPR/Cas13-assisted hepatitis B virus covalently closed circular DNA detection[J]. Hepatology International, 2022, 16(2): 306-315.
[46] 蒋远东, 腾子豪, 王玥, 等. 1990-2019 年中国结核病发病趋势的年龄- 时期- 队列模型分析[J]. 中华疾病控制杂志, 2022, 26(11): 1275-1282. JIANG Yuandong, TENG Zihao, WANG Yue, et al. Trend of tuberculosis incidence in China from 1990 to 2019 based on the age-period-cohort model [J]. Chinese Journal of Disease Control & Prevention, 2022, 26(11):1275-1282.
[47] ZHOU Jin, YIN Lijuan, DONG Yanan, et al. CRISPRCas13a based bacterial detection platform: sensing pathogen Staphylococcus aureus in food samples[J].Analytica Chimica Acta, 2020, 1127: 225-233.
[48] SHEN Jinjin, ZHOU Xiaoming, SHAN Yuanyue, et al. Sensitive detection of a bacterial pathogen using allosteric probe-initiated catalysis and CRISPR-Cas13a amplification reaction[J]. Nature Communications,2020, 11(1): 267.
[49] XIANG Xinran , LI Fan , YE Qingping ,et al.Highthroughput microfluidic strategy based on RAACRISPR/Cas13a dual signal amplification for accurate identification of pathogenic Listeria[J].Sensors and Actuators B: Chemical, 2022, 358: 131517.
[50] 安柏霖, 苏璇, 郭悦, 等. 重组酶介导的等温扩增技术联合CRISPR-Cas13a 快速检测4 种腹泻病原菌[J].中国食品卫生杂志, 2023, 35(3): 381-389. AN Bailin, SU Xuan, GUO Yue, et al. Rapid detection of four diarrheal bacteria by CRISPR-Cas13a combined with recombinase aided amplification [J]. Chinese Journal of Food Hygiene, 2023, 35(3): 381-389.
[51] HUANG Kaichen, YU Hailing, CHEN Zhenhua,et al. CRISPR-Cas13a-based diagnostic method for Chlamydia trachomatis from nongonococcal urethritis[J]. Bioanalysis, 2021, 13(11): 901-912.
[52] CHEN Wentao, LUO Hao, ZENG Lihong, et al. A suite of PCR-LwCas13a assays for detection and genotyping of Treponema pallidum in clinical samples[J]. Nature Communications, 2022, 13(1): 4671.
[53] ZHAO Jinhong, LI Yuanyuan, XUE Qiqi, et al. A novel rapid visual detection assay for Toxoplasma gondii combining recombinase-aided amplification and lateral flow dipstick coupled with CRISPR-Cas13a fluorescence (RAA-Cas13a-LFD)[J]. Parasite, 2022,29∶21.
[54] ZHAN Yangqing, GAO Xiaoqing, LI Shaoqiang,et al. Development and evaluation of rapid and accurate CRISPR/Cas13-based RNA diagnostics for Pneumocystis jirovecii pneumonia[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12:904485.