参考文献/References:
[1] 仲亚东, 孔德桐, 马伯敏. 甲状腺癌患者组织及手术前后血清中NR3C2 和ZEB1 表达水平及其与预后价值研究[J]. 现代检验医学杂志, 2023, 38(4): 94-99. ZHONG Yadong, KONG Detong, MA Baimin. Study on the expression level of NR3C2 and ZEB1 in thyroid cancer tissue and serum of patients before and after surgery and their prognostic value[J]. Journal of Modern Laboratory Medicine, 2023, 38(4): 94-99.
[2] 刘星, 霍占江. 甲状腺乳头状癌组织中galecti-3 与miR-375 水平表达意义及相关性研究[J]. 现代检验医学杂志, 2023, 38(1): 49-52, 185. LIU Xing, HUO Zhanjiang. Expression significance and correlation of galectin-3 and miR-375 in papillary thyroid carcinoma tissue[J]. Journal of Modern Laboratory Medicine, 2023, 38(1): 49-52, 185.
[3] 张廷华, 胡友元. miRNA 在甲状腺癌中的研究进展[J]. 生命的化学, 2022, 42(12): 2231-2236. ZHANG Tinghua, HU Youyuan. Research progress of miRNA in thyroid cancer[J]. Chemistry of Life, 2022, 42(12): 2231-2236.
[4] PAPAIOANNOU M,CHORTI A G, CHATZIKYRIAKIDOU A, et al. MicroRNAs in papillary thyroid cancer: what is new in diagnosis and treatment[J]. Frontiers in Oncology, 2021, 11: 755097.
[5] ENIAFE J, JIANG Shuai. MicroRNA-99 family in cancer and immunity[J]. Wiley Interdisciplinary Reviews RNA, 2021, 12(3): e1635.
[6] 张廷华, 胡友元. miR-100 在人类癌症中的研究新进展[J]. 分子诊断与治疗杂志, 2024, 16(1): 195-198. ZHANG Tinghua, HU Youyuan. New progress in the research of miR-100 in human cancer[J]. Journal of Molecular Diagnosis and Therapy, 2024, 16(1): 195-198.
[7] GE Yiman, SHU Jia, SHI Gang, et al. MiR-100 suppresses the proliferation, invasion, and migration of hepatocellular carcinoma cells via targeting CXCR7[J]. Journal of Immunology Research, 2021, 2021:9920786.
[8] 邹艳花, 许可葵, 李灿, 等. 2019 年湖南省肿瘤登记地区恶性肿瘤发病与死亡及2015-2019 年变化趋势分析[J]. 中国肿瘤, 2023, 32(7): 483-491. ZOU Yanhua, XU Kekui, LI Can, et al. Cancer incidence and mortality in hunan cancer registration areas in 2019 and its trend from 2015 to 2019[J]. China Cancer, 2023, 32(7): 483-491.
[9] 赵芳芳, 郭红, 陈嘉. LncRNA TUG1 在甲状腺癌组织中的表达及其对细胞增殖和迁移的影响[J]. 现代检验医学杂志, 2020, 35(6): 42-47. ZHAO Fangfang, GUO Hong, CHEN Jia. Expression of LncRNA TUG1 in thyroid carcinoma tissues and its effect on cell proliferation and migration[J]. Journal of Modern Laboratory Medicine, 2020, 35(6): 42-47.
[10] LI Chen, GAO Yanping, ZHANG Kai, et al. Multiple roles of microRNA-100 in human cancer and its therapeutic potential[J]. Cellular Physiology and Biochemistry, 2015, 37(6): 2143-2159.
[11] XIE Haihui, XIAO Ruobing, HE Yaolin, et al. MicroRNA-100 inhibits breast cancer cell proliferation, invasion and migration by targeting FOXA1[J]. Oncology Letters, 2021, 22(6): 816.
[12] ZHANG Hongliang, YANG Kang, REN Tingting, et al. MiR-100-5p inhibits malignant behavior of chordoma cells by targeting IGF1R[J]. Cancer Management and Research, 2020, 12: 4129-4137.
[13] YE Yun, LI Suliang, WANG Jianjun. MiR-100-5p downregulates mTOR to suppress the proliferation, migration, and invasion of prostate cancer cells[J]. Frontiers in Oncology, 2020, 10: 578948.
[14] JAKOB M, MATTES L M, K?FFER S, et al. MicroRNA expression patterns in oral squamous cell carcinoma: hsa-mir-99b-3p and hsa-mir-100-5p as novel prognostic markers for oral cancer[J]. Head & Neck, 2019, 41(10): 3499-3515.
[15] OTTAVIANI S, CASTELLANO L. MicroRNAs: novel regulators of the TGF-β pathway in pancreatic ductal adenocarcinoma[J]. Molecular Cellular Oncology, 2018, 5(6): e1499066.
[16] FUSO P, DI SALVATORE M, SANTONOCITO C, et al. Let-7a-5p, miR-100-5p, miR-101-3p, and miR-199a-3p hyperexpression as potential predictive biomarkers in early breast cancer patients[J]. Journal of Personalized Medicine, 2021, 11(8): 816.
[17] XUE Yao, YANG Xiaoyun, HU Shaoyan, et al. A genetic variant in miR-100 is a protective factor of childhood acute lymphoblastic leukemia[J]. Cancer Medicine, 2019, 8(5): 2553-2560.
[18] FIGUEROA-GONZ?LEZ G, CARRILLO-HERN?NDEZ J F, PEREZ-RODRIGUEZ I, et al. Negative regulation of serine threonine kinase 11 (STK11) through miR-100 in head and neck cancer[J]. Genes, 2020, 11(9): 1058.
[19] BI Yunlong, JING Yu, CAO Yang. Overexpression of miR-100 inhibits growth of osteosarcoma through FGFR3[J]. Tumour Biology, 2015, 36(11): 8405-8411.
[20] LUO Jie, CHEN Bin, JI Xianxiu, et al. Overexpression of miR-100 inhibits cancer growth, migration, and chemosensitivity in human NSCLC cells through fibroblast growth factor receptor 3[J]. Tumour Biology, 2016, 37(12): 15517-15524.
[21] LUAN Yongxin, ZHANG Shuyan, ZUO Ling, et al. Overexpression of miR-100 inhibits cell proliferation, migration, and chemosensitivity in human glioblastoma through FGFR3[J]. Onco Targets and Therapy, 2015, 8: 3391-3400.
[22] LI Zhipeng, LI Xu, YU Chao, et al. MicroRNA-100 regulates pancreatic cancer cells growth and sensitivity to chemotherapy through targeting FGFR3[J]. Tumour Biology, 2014, 35(12): 11751-11759.
[23] BAE J S, JUNG S H, HIROKAWA M, et al. High prevalence of DICER1 mutations and low frequency of gene fusions in pediatric follicular-patterned tumors of the thyroid[J]. Endocrine Pathology, 2021, 32(3): 336-346.
[24] JONKER P K C, VAN DAM G M, OOSTING S F, et al. Identification of novel therapeutic targets in anaplastic thyroid carcinoma using functional genomic mRNA-profiling: paving the way for new avenues?[J]. Surgery, 2017, 161(1): 202-211.
[25] TIEDJE V, TING S, WALTER R F, et al. Prognostic markers and response to vandetanib therapy in sporadic medullary thyroid cancer patients[J]. European Journal of Endocrinology, 2016, 175(3): 173-180.
[26] ST BERNARD R, ZHENG Lei, LIU Wei, et al. Fibroblast growth factor receptors as molecular targets in thyroid carcinoma[J]. Endocrinology, 2005, 146(3): 1145-1153.
[27] ONOSE H, EMOTO N, SUGIHARA H, et al. Overexpression of fibroblast growth factor receptor 3 in a human thyroid carcinoma cell line results in overgrowth of the confluent cultures[J]. European Journal of Endocrinology, 1999, 140(2): 169-173.
[28] PARKER B C, ENGELS M, ANNALA M, et al. Emergence of FGFR family gene fusions as therapeutic targets in a wide spectrum of solid tumours[J]. The Journal of Pathology, 2014, 232(1): 4-15.
相似文献/References:
[1]彭继英a,杨红杰b,石晓欣a,等.细针穿刺细胞学检查在甲状腺癌碘-131 治疗后复发诊断中的应用价值[J].现代检验医学杂志,2020,35(01):127.[doi:10.3969/j.issn.1671-7414.2020.01.033]
PENG Ji-yinga,YANG Hong-jieb,SHI Xiao-xina,et al.Application Value of Fine Needle Aspiration Cytology in Recurrence
Diagnosis of Thyroid Cancer after Iodine-131 Treatment[J].Journal of Modern Laboratory Medicine,2020,35(04):127.[doi:10.3969/j.issn.1671-7414.2020.01.033]
[2]赵芳芳,郭 红,陈 嘉.LncRNA TUG1 在甲状腺癌组织中的表达及其对细胞增殖和迁移的影响[J].现代检验医学杂志,2020,35(06):42.[doi:doi:10.3969/j.issn.1671-7414.2020.06.011]
ZHAO Fang-fang,GUO Hong,CHEN Jia.Expression of LncRNA TUG1 in Thyroid Carcinoma Tissues and Its Effect onCell Proliferation and Migration[J].Journal of Modern Laboratory Medicine,2020,35(04):42.[doi:doi:10.3969/j.issn.1671-7414.2020.06.011]
[3]仲亚东,孔德桐,马伯敏.甲状腺癌患者组织及手术前后血清中NR3C2 和ZEB1 表达水平及其与预后价值研究[J].现代检验医学杂志,2023,38(04):94.[doi:10.3969/j.issn.1671-7414.2023.04.017]
ZHONG Yadong,KONG Detong,MA Bomin.Study on the Expression Level of NR3C2 and ZEB1 in Thyroid Cancer Tissue and Serum of Patients before and after Surgery and Their Prognostic Value[J].Journal of Modern Laboratory Medicine,2023,38(04):94.[doi:10.3969/j.issn.1671-7414.2023.04.017]
[4]谈玖婷,傅聿明,刘 婧,等.甲状腺癌组织中DCBLD2 和MAP4K3 的表达及与临床病理特征及预后的关系[J].现代检验医学杂志,2024,39(02):34.[doi:10.3969/j.issn.1671-7414.2024.02.007]
TAN Jiuting,FU Yuming,LIU Jing,et al.Expression of DCBLD2 and MAP4K3 in Thyroid Cancer Tissue and Their Relationship with Clinico-pathological Features and Prognosis[J].Journal of Modern Laboratory Medicine,2024,39(04):34.[doi:10.3969/j.issn.1671-7414.2024.02.007]