[1]刘 成,赵 娟,贾 茜,等.ACSL4通过AMPK/mTOR通路抑制七氟醚诱导神经元铁死亡机制的实验研究[J].现代检验医学杂志,2024,39(06):67-72.[doi:10.3969/j.issn.1671-7414.2024.06.011]
 LIU Cheng,ZHAO Juan,JIA Qian,et al.Experimental Study on the Mechanism of ACSL4 Inhibition of Sevofluraneinduced Neuronal Iron Death through the AMPK/mTOR Pathway[J].Journal of Modern Laboratory Medicine,2024,39(06):67-72.[doi:10.3969/j.issn.1671-7414.2024.06.011]
点击复制

ACSL4通过AMPK/mTOR通路抑制七氟醚诱导神经元铁死亡机制的实验研究()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第39卷
期数:
2024年06期
页码:
67-72
栏目:
论著
出版日期:
2024-11-15

文章信息/Info

Title:
Experimental Study on the Mechanism of ACSL4 Inhibition of Sevofluraneinduced Neuronal Iron Death through the AMPK/mTOR Pathway
文章编号:
1671-7414(2024)06-067-06
作者:
刘 成赵 娟贾 茜谢生春罗 彬魏官锋
(绵阳市人民医院麻醉科,四川绵阳 621000)
Author(s):
LIU Cheng ZHAO Juan JIA Qian XIE Shengchun LUO Bin WEI Guanfeng
(Department of Anesthesiology, Mianyang People’s Hospital, Sichuan Mianyang 621000, China)
关键词:
酰基辅酶A 合成酶长链家族成员4神经元铁死亡七氟醚AMPK/mTOR 信号通路
分类号:
R392-33
DOI:
10.3969/j.issn.1671-7414.2024.06.011
文献标志码:
A
摘要:
目的 探讨酰基辅酶A 合成酶长链家族成员4(acyl-CoA syntbetase long chain family member 4,ACSL4)在七氟醚(sevoflurane,Sev)诱导的神经元细胞损伤中的作用及机制。方法 以人神经母细胞瘤SH-SY5Y 细胞为研究对象,分别设置对照组(二甲基亚砜,10μmol/L)、Sev 组和Sev+ 铁死亡抑制剂Ferrostatin-1(Fer-1,10μmol/L)组,采用CCK-8 法检测细胞活性。体外构建4.1% Sev 暴露的术后认知功能障碍模型,按照转染类别分为Ctrol 组、Sev 组、Sev+si-NC 组、Sev+si-ACSL4 组和Sev+si-ACSL4+compound C 组。采用比色法检测各组细胞中丙二醛(malonaldehyde,MDA)、4- 羟基壬烯醛(4-hydroxynonenal,4-HNE)、谷胱甘肽(glutathione,GSH)和Fe2+ 含量;2’,7’- 二氯荧光素二乙酸盐(DCFH-DA)荧光探针检测活性氧水平;实时荧光定量PCR(qRT-PCR)检测ACSL4,谷胱甘肽过氧化酶4(glutathione peroxidase 4,GPX4)和溶质载体家族7 成员11(solute carrier family 7 member 11,SLC7A11)mRNA 表达;蛋白免疫印迹法(WB)检测ACSL4,GPX4,腺苷酸激活蛋白激酶(adenosine 5’-monophosphate-activated proteinkinase,AMPK)、磷酸化(phosphorylated,p)-AMPK,哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin)mTOR 和p-mTOR 蛋白表达。结果 CCK-8 结果显示,Sev 组细胞活力(0.41±0.11)较对照组(0.98±0.07)明显降低,Sev+Fer-1 组细胞活力(0.83±0.09)较Sev 组显著升高,差异具有统计学意义(t=7.572,5.118,均P<0.01)。Sev 组细胞中Fe2+,MDA,4-HNE,ROS 水平和p-AMPK/AMPK 比率以及ACSL4 的mRNA 和蛋白表达高于Ctrol 组(t=5.900,7.421,4.795,13.517,10.825,9.945,11.334),GSH,p-mTOR/mTOR 比率以及SLC7A11,GPX4 的mRNA 和蛋白表达低于Ctrol 组(t=20.438,3.551,11.460,12.211,6.845,8.287),差异具有统计学意义(均P<0.05)。Sev+si-ACSL4 组Fe2+,MDA,4-HNE,ROS 水平和p-AMPK/AMPK 比率以及ACSL4 的mRNA 和蛋白表达低于Sev+si-NC 组(t=3.818,3.164,3.054,4.465,13.088,7.918,9.737), 细胞活力、GSH 含量、p-mTOR/mTOR 比率以及SLC7A11,GPX4 的蛋白表达高于Sev+si-NC 组(t=2.912,7.248,7.574,20.092,5.915),差异具有统计学意义(均P<0.05)。Sev+si-ACSL4+compound C 组细胞活力、GSH含量和SLC7A11,GPX4蛋白表达低于Sev+si-ACSL4 组(t=4.435,8.521,4.522,8.767),而Fe2+,MDA,4-HNE 和ROS 水平高于Sev+si-ACSL4 组(t=10.046,4.004,2.957,3.752),差异具有统计学意义(均P<0.05)。结论 抑制ACSL4 表达可通过激活AMPK/mTOR 信号通路减轻Sev 诱导的SHSY5Y细胞铁死亡。
Abstract:
Objective To investigate the role and mechanism of acyl-CoA syntbetase long chain family member 4 (ACSL4) in Sevoflurane (Sev) induced neuronal cell damage. Methods Human neuroblastoma SH-SY5Y cells were used as the research object, and control group (dimethyl sulfoxide, 10 μmol/L), Sev group and Sev+iron death inhibitor Ferrostatin-1 (Fer-1, 10 μmol/ L) group were set up. CCK-8 method was used to detect cell activity in each group.4.1% Sev exposed postoperative cognitive dysfunction model was constructed in vitro and divided into Ctrol group, Sev group, Sev+si-NC group, Sev+si-ACSL4 group, and Sev+si-ACSL4+compound C group according to the transfection category.The contents of Malonaldehyde (MDA), 4-hydroxynonenal (4-HNE), Glutathione (GSH) and Fe2+ in each group were detected by colorimetry. The level of reactive oxygen species was detected using a 2’ , 7’- dichlorofluorescein diacetate (DCFH-DA) fluorescent probe. Real time fluorescence quantitative PCR(qRT-PCR)was used to detect the mRNA expression of ACSL4, glutathione peroxidase 4 (GPX4), and solute carrier family 7 member 11 (SLC7A11).Protein immunoblotting was used to detect the expression of ACSL4, GPX4, adenosine 5’- monophosphate activated protein kinase (AMPK), phosphorylated (p) - AMPK, mammalian target of rapamycin(mTOR) and p-mTOR proteins. Results CCK-8 results showed that the cell viability of Sev group (0.41±0.11)was significantly lower than that of control group (0.98±0.07), and the cell viability of Sev+Fer-1 group(0.83±0.09)was significantly higher than that of Sev group (0.41±0.11), and the differences were statistically significant (t=7.572, 5.118, all P<0.01). The levels of Fe2+, MDA, 4-HNE, ROS and p-AMPK/AMPK ratios, as well as the mRNA and protein expression of ACSL4 in the Sev group cells, were higher than those in the Ctrol group(t=5.900, 7.421, 4.795, 13.517, 10.825, 9.945, 11.334), the GSH conten, p-mTOR/ mTOR ratio, and mRNA and protein expression of SLC7A11 and GPX4 were lower than those in the Ctrol group (t=20.438, 3.551, 11.460, 12.211, 6.845,8.287), and the differences were statistically significant (all P<0.05)repectively. The levels of Fe2+, MDA, 4-HNE, ROS, and p-AMPK/AMPK ratios, as well as the mRNA and protein expression of ACSL4 in the Sev+si-ACSL4 group, were lower than those in the Sev+si-NC group (t=3.818, 3.164, 3.054, 4.465, 13.088, 7.918, 9.737), the cell viability, GSH content, p-mTOR/mTOR ratio, and protein expression of SLC7A11 and GPX4 were higher than those in the Sev+si-NC group(t=2.912, 7.248, 7.574, 20.092, 5.915), and the differences were statistically significant (all P<0.05), respectively. The cell viability, GSH content, SLC7A11, and GPX4 protein expression in the Sev+si-ACSL4+compound C group were lower than those in the Sev+si-ACSL4 group (t=4.435, 8.521, 4.522, 8.767), while the levels of Fe2+, MDA, 4-HNE, and ROS were higher than those in the Sev+si-ACSL4 group(t=10.046, 4.004, 2.957, 3.752), and the differences were statistically significant (all P<0.05). Conclusion Inhibiting ACSL4 expression attenuates Sev-induced iron death in SH-SY5Y cells by activating the AMPK/mTOR signaling pathway.

参考文献/References:

[1] WANG Congmei, CHEN Weican, ZHANG Yan, et al. Update on the mechanism and treatment of sevofluraneinduced postoperative cognitive dysfunction [J]. Frontiers in Aging Neuroscience, 2021, 13: 702231.
[2] SUN Mingyang, XIE Zhongcong, ZHANG Jiaqiang,et al. Mechanistic insight into sevoflurane-associated developmental neurotoxicity[J]. Cell Biology and Toxicology, 2022, 38(6): 927-943.
[3] AKSENOV D P, MILLER M J, DIXON C J, et al. Impact of anesthesia exposure in early development on learning and sensory functions[J]. Developmental Psychobiology, 2020, 62(5): 559-572.
[4] LU Yi, HUANG Yan, JIANG Jue, et al. Neuronal apoptosis may not contribute to the long-term cognitive dysfunction induced by a brief exposure to 2% sevoflurane in developing rats[J]. Biomedecine & Pharmacotherapie, 2016, 78: 322-328.
[5] WU Ya’nan, SONG Juan, WANG Yafeng, et al. The potential role of ferroptosis in neonatal brain injury[J]. Frontiers in Neuroscience, 2019, 13: 115.
[6] ZUO Yong, CHANG Yanzhong, THIRUPATHI A, et al. Prenatal sevoflurane exposure: effects of iron metabolic dysfunction on offspring cognition and potential mechanism[J]. International Journal of Developmental Neuroscience, 2021, 81(1): 1-9.
[7] KUWATA H, HARA S. Role of acyl-CoA synthetase ACSL4 in arachidonic acid metabolism [J]. Prostaglandins & Other Lipid Mediators, 2019, 144: 106363.
[8] DOLL S, PRONETH B, TYURINA Y Y, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nature Chemical Biology, 2017, 13(1):91-98.
[9] 马磊, 蔡亲东, 陈基胜. 老年全麻术患者血清HIF-1α,S-100β 蛋白,BDNF 水平及rSO2 的动态检测与围术期神经认知紊乱的相关性分析[J]. 现代检验医学杂志, 2021, 36(5): 153-158. MA Lei, CAI Qindong, CHEN Jisheng. Correlation analysis of dynamic detection of serum HIF-1α,S-100βprotein, BDNF and rSO2with perioperative neurocognitive disorders in elderly patients undergoing general anesthesia [J]. Journal of Modern Laboratory Medicine, 2021, 36(5): 153-158.
[10] 胡雨蛟, 吴安国, 欧册华. 麻醉药物的神经保护作用与神经毒性研究进展[J]. 西南医科大学学报, 2021,44(2): 181-186. HU Yujiao, WU Anguo, OU Cehua. Research progress in neuroprotection and neurotoxicity of anesthetics[J]. Journal of Southwest Medical University, 2021, 44(2): 181-186.
[11] MASALDAN S, BUSH A I, DEVOS D, et al. Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration [J]. Free Radical Biology and Medicine, 2019, 133: 221-233.
[12] XIA Yimeng, SUN Xiaoyun, LUO Yan, et al. Ferroptosis contributes to isoflurane neurotoxicity[J]. Frontiers in Molecular Neuroscience, 2018, 11: 486.
[13] CHEN Xin, LI Jingbo, KANG Rui, et al. Ferroptosis: machinery and regulation[J]. Autophagy, 2021, 17(9): 2054-2081.
[14] MA Linlin, LIANG Lin, ZHOU Dan, et al. Tumor suppressor miR-424-5p abrogates ferroptosis in ovarian cancer through targeting ACSL4[J]. Neoplasma, 2021,68(1): 165-173.
[15] XU Yixin, LI Xuehan, CHENG Yan, et al. Inhibition of ACSL4 attenuates ferroptotic damage after pulmonary ischemia-reperfusion[J]. FASEB Journal, 2020, 34(12): 16262-16275.
[16] 张丽. ACSL4 通过介导铁死亡来调节子痫前期中滋养层细胞的迁移和侵袭[J]. 中国优生与遗传杂志,2023, 31(8): 1615-1621. ZHANG Li. ACSL4 regulates trophoblast migration and invasion in preeclampsia by mediating iron death[J]. Chinese Journal of Birth Health & Heredity,2023, 31(8): 1615-1621.
[17] 马雪, 刘凡, 王强, 等. 电针对帕金森病小鼠铁死亡诱导的氧化应激及细胞凋亡的影响[J]. 针刺研究,2023, 48(12): 1242-1248. MA Xue, LIU Fan, WANG Qiang, et al. Effect of electroacupuncture on oxidative stress and cell apoptosis induced by ferroptosis in mice with Parkinson’s disease[J]. Acupuncture Research, 2023,48(12): 1242-1248.
[18] 孔维轩, 杨鹏杰, 魏起友, 等. 通过抑制铁死亡减轻脓毒症引起急性肺损伤的研究[J]. 联勤军事医学,2023, 37(12): 998-1002, 1022. KONG Weixuan, YANG Pengjie, WEI Qiyou, et al. Experimental study of reducing sepsis-induced acute lung injury by inhibiting ferroptosis[J]. Military Medicine of Joint Logistics, 2023, 37(12): 998-1002,1022.
[19] LIN Shengcai, HARDIE D G. AMPK: sensing glucose as well as cellular energy status[J]. Cell Metabolism,2018, 27(2): 299-313.
[20] GAO Minghui, YI Junmei, ZHU Jiajun, et al. Role of mitochondria in ferroptosis[J]. Molecular Cell, 2019,73(2): 354-363,e3.
[21] LEE H, ZANDKARIMI F, ZHANG Yilei, et al. Energystress-mediated AMPK activation inhibits ferroptosis[J]. Nature Cell Biology, 2020, 22(2): 225-234.
[22] HAN Dandan, JIANG Lili, GU Xiaolong, et al. SIRT3 deficiency is resistant to autophagy-dependent ferroptosis by inhibiting the AMPK/mTOR pathway and promoting GPX4 levels[J]. Journal of Cellular Physiology, 2020, 235(11): 8839-8851.

相似文献/References:

[1]崔小丽,孙 宁,赵 瑞,等.艾地苯醌对癫痫大鼠模型神经元线粒体功能、能量代谢及抗氧化作用机制研究[J].现代检验医学杂志,2023,38(01):44.[doi:10.3969/j.issn.1671-7414.2023.01.009]
 CUI Xiao-li,SUN Ning,ZHAO Rui,et al.Study on the Mechanism of Idebenone on Mitochondrial Function, Energy Metabolism and Antioxidation in Epileptic Rats Model[J].Journal of Modern Laboratory Medicine,2023,38(06):44.[doi:10.3969/j.issn.1671-7414.2023.01.009]
[2]俞 娟,黄 琦,张 亮,等.急性脑梗死患者血清SLC7A11和ACSL4表达水平与神经功能损害程度及预后的关系研究[J].现代检验医学杂志,2025,40(01):153.[doi:10.3969/j.issn.1671-7414.2025.01.029]
 YU Juan,HUANG Qi,ZHANG Liang,et al.Study on the Relationship between the Expression Levels of Serum SLC7A11 and ACSL4 and the Degree of Neurological Impairment and Prognosis in Patients with Acute Cerebral Infarction[J].Journal of Modern Laboratory Medicine,2025,40(06):153.[doi:10.3969/j.issn.1671-7414.2025.01.029]

备注/Memo

备注/Memo:
基金项目:四川省卫生健康委员会科研课题(19SYJS15)。
作者简介:刘成(1986-),男,硕士,主治医师,研究方向:麻醉药学,E-mail:liucheng198611@126.com。
通讯作者:魏官锋(1973-),男,副主任医师,研究方向:麻醉药学,E-mail:625588509@163.com。
更新日期/Last Update: 2024-11-15