[1]冯馨锐,吴韦铷,张晓丽,等.人工智能辅助血细胞形态学检查的机遇与挑战[J].现代检验医学杂志,2025,40(01):189-195.[doi:10.3969/j.issn.1671-7414.2025.01.036]
 FENG Xinrui,WU Weiru,ZHANG Xiaoli,et al.Opportunities and Challenges of Artificial Intelligence Assisted Blood Cell Morphology Examination[J].Journal of Modern Laboratory Medicine,2025,40(01):189-195.[doi:10.3969/j.issn.1671-7414.2025.01.036]
点击复制

人工智能辅助血细胞形态学检查的机遇与挑战()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第40卷
期数:
2025年01期
页码:
189-195
栏目:
质量控制·实验室管理
出版日期:
2025-01-15

文章信息/Info

Title:
Opportunities and Challenges of Artificial Intelligence Assisted Blood Cell Morphology Examination
文章编号:
1671-7414(2025)01-189-07
作者:
冯馨锐吴韦铷张晓丽杨 忠毕清华
(中国人民解放军陆军军医大学药学与检验医学系临床血液学教研室,重庆400038 )
Author(s):
FENG XinruiWU WeiruZHANG XiaoliYANG ZhongBI Qinghua
(Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University,Chongqing 400038, China)
关键词:
人工智能血细胞形态学检查临床应用
分类号:
R446
DOI:
10.3969/j.issn.1671-7414.2025.01.036
文献标志码:
A
摘要:
血细胞形态学检查是血液病诊断的基础和重要手段。人工智能(AI)辅助血细胞形态学检查在早期检测和诊断血液病方面弥补了人工显微镜检查方法的不足,提高了诊断效率、准确度和敏感度,很大程度上降低了人力和时间成本,明显提升医疗质量和推动个性化医疗。目前国内临床仍以传统人工镜检为标准方法,为推动人工智能辅助血细胞形态学检查的完善和发展,该文讨论了人工智能辅助血细胞形态学检查的现状及特点,考虑到自动化血细胞形态学分析的标准化、数据库和伦理等问题,对其仍存在的一些挑战和局限性进行总结分析,可以支持血液疾病的诊断,并在未来为研究人员和临床医生提供帮助。
Abstract:
Blood cell morphology examination is the foundation and important means of diagnosing blood diseases. Artificial intelligence (AI) assisted blood cell morphology examination compensates for the shortcomings of artificial microscopy in the early detection and diagnosis of blood diseases, improves diagnostic efficiency, accuracy, and sensitivity, greatly reduces labor and time costs, significantly improves medical quality, and promotes personalized health care. Traditional manual microscopy is still the standard method in clinical practice in China. In order to encourage the improvement and development of intelligenceassisted blood cell morphology examination, this article discusses the current situation and characteristics of intelligence-assisted blood cell morphology examination. Considering the standardization, database, and ethical issues of automated blood cell morphology analysis, some challenges and limitations are summarized and analyzed, which can support the diagnosis of blood diseases and assist researchers and clinical doctors in the future.

参考文献/References:

[1] PALMER L, BRIGGS C, MCFADDEN S, et al. ICSH recommendations for the standardization of nomenclature and grading of peripheral blood cell morphological features[J]. International Journal of Laboratory Hematology, 2015, 37(3): 287-303.
[2] 白求恩精神研究会检验医学分会. 中华医学会检验医学分会血液体液学组, 中国医学装备协会检验医学分会基础检验设备学组. 人工智能辅助外周血细胞形态学检查的中国专家共识[J]. 中华检验医学杂志,2023,46(3):243-258. Medical Laboratory Diagnostics Branch Society of Bethune Spiritual Research Association,Laboratory Medicine Committee of Chinese Association of Integrative Medicine,Hematology and Body Fluid Group.Chinese expert consensus on artificial intelligence assisted morphology examination of peripheral blood cells [J].Chinese Journal of Laboratory Medicine,2023, 46(3): 243-258.
[3] 杨华,孙天舒,王瑶,等.人工智能辅助阅片与单纯人工阅片在女性阴道微生态系统形态学诊断中的比对研究[J]. 现代检验医学杂志,2023,38(1):169-174, 198. YANG Hua, SUN Tianshu, WANG Yao, et al. Comparative study of artificial intelligence-assisted analysis and manual visual analysis in gynecological microbiome diagnosis [J].Journal of Modern Laboratory Medicine, 2023, 38(1): 169-174, 198.
[4] 李勤, 石佳, 卢兴兵, 等.XN-9000 全自动血液细胞分析仪有核红细胞计数与手工方法验证的探讨[J].现代检验医学杂志,2017,32(1):124-127. LI Qin, SHI Jia, LU Xingbing, et al. Evaluation of the nucleated red blood cells count of sysmex XN-9000 automatic hematology analyzer and the validation of manual method[J]. Journal of Modern Laboratory Medicine, 2017, 32(1): 124-127.
[5] LIPPI G, MATTIUZZI C, FAVALORO E J. Artificial intelligence in the pre-analytical phase: state-of-the art and future perspectives[J]. Journal of Medical Biochemistry, 2024, 43(1): 1-10.
[6] RASTOGI P, KHANNA K, SINGH V. LeuFeatx: deep learning-based feature extractor for the diagnosis of acute leukemia from microscopic images of peripheral blood smear [J]. Computers in Biology and Medicine, 2022, 142: 105236.
[7] LIPPEVELD M, KNILL C, LADLOW E, et al. Classification of human white blood cells using machine learning for stain-free imaging flow cytometry[J]. Cytometry, 2020, 97(3): 308-319.
[8] 余恋雨, 陈鸣. 人工智能在检验领域的新发展新方向[J]. 中华检验医学杂志,2021,44(10):887-891. YU Lianyu, CHEN Ming. New development and new direction of artificial intelligence in laboratory medicine [J].Chinese Journal of Laboratory Medicine, 2021, 44(10): 887-891.
[9] 何文军, 李曼, 李涛, 等. 基于血细胞形态识别的自动检测系统的研发[J]. 现代检验医学杂志,2019,34(2):104-108. HE Wenjun, LI Man, LI Tao, et al.Study on automatic detection system base on blood cell morphology recognition [J]. Journal of Modern Laboratory Medicine, 2019, 34(2): 104-108.
[10] BARRERA K, MERINO A, MOLINA A, et al. Automatic generation of artificial images of leukocytes and leukemic cells using generative adversarial networks (syntheticcellgan) [J]. Computer Methods and Programs in Biomedicine, 2023, 229:107314.
[11] 樊爱琳,杨丽华,刘家云,等. 全自动数字细胞分析系统对血小板聚集的检测能力分析[J]. 中华检验医学杂志,2023,46(7):732-737. FAN Ailin, YANG Lihua, LIU Jiayun, et al. Evaluation of automated digital cell morphology system for the detection of platelet clumps[J]. Chinese Journal of Laboratory Medicine, 2023, 46(7): 732-737.
[12] MANNINO R G, MYERS D R, TYBURSKI E A, et al. Smartphone app for non-invasive detection of anemia using only patient-sourced photos[J]. Nature Communications, 2018, 9(1): 4924.
[13] KIMURA K, TABE Y, AI T, et al. A novel automated image analysis system using deep convolutional neural networks can assist to differentiate MDS and AA[J]. Scientific Reports, 2019, 9(1): 13385.
[14] KRITTANAWONG C, ZHANG Hongju, WANG Zhen, et al. Artificial intelligence in precision cardiovascular medicine[J]. Journal of the American College of Cardiology, 2017, 69(21): 2657-2664.
[15] 骆琳.基于深度神经网络对肺间质纤维化的预测[D].大连:大连医科大学,2022. LUO Lin.Prediction of pulmonary fibrosis based on deep neural network[D].Dalian:Dalian Medical University,2022.
[16] Abdalla Fakheraldin Yahia Omer. 基于非线性和非平稳分解方法的心律失常分类研究[D]. 哈尔滨:哈尔滨工业大学,2021. ABDALLA F Y O.Ecg arrhythmia classification based on nonlinear and nonstationary decomposition methods[D].Harbin: Harbin Institute of Technology,2021.
[17] 武江朋.基于血液检测数据的计算机辅助医疗诊断系统构建[D].兰州:兰州大学,2020. WU Jiangpeng. Construction of computer-aided medical diagnosis system based onblood test data[D]. Lanzhou:Lanzhou University,2020.
[18] 刘贵建,庞博.应促进和拓展人工智能辅助血细胞形态学检查的临床应用[J]. 中华检验医学杂志,2023,46(3):231-237. LIU Guijian, PANG Bo. The clinical application of artificial intelligence assisted blood cell morphological examination should be promoted and expanded[J]. Chinese Journal of Laboratory Medicine, 2023, 46(3):231-237.
[19] BAYDILLI Y Y, ATILA ?. Classification of white blood cells using capsule networks [J]. Computerized Medical Imaging and Graphics, 2020, 80: 101699.
[20] LI Mingling, FANG Shu, WANG Xiaoli, et al. Peripheral blood leukocyte detection based on an improved detection transformer algorithm[J]. Sensors (Basel,Switzerland),2023, 23(16):7226
[21] CHEN Pu, ZHANG Lan, CAO Xinyi, et al. Detection of circulating plasma cells in peripheral blood using deep learning-based morphological analysis[J]. Cancer, 2024, 130(10): 1884-1893.
[22] LI Junxun, OUYANG Juan, LIU Juan, et al. Artificial intelligence-based online platform assists blood cell morphology learning:a mixed-methods sequential explanatory designed research[J]. Medical Teacher, 2023, 45(6): 596-603.
[23] BAIN B J. Diagnosis from the blood smear[J]. the New England Journal of Medicine, 2005, 353(5): 498-507.
[24] HUR M, CHO J H, KIM H, et al. Optimization of laboratory workflow in clinical hematology laboratory with reduced manual slide review: comparison between Sysmex XE-2100 and ABX Pentra DX120[J]. International Journal of Laboratory Hematology, 2011, 33(4): 434-440.
[25] BADANO A, REVIE C, CASERTANO A, et al. Consistency and standardization of color in medical imaging: a consensus report[J]. Journal of Digital Imaging, 2015, 28(1): 41-52.
[26] PANTANOWITZ L, SINARD J H, HENRICKS W H, et al. Validating whole slide imaging for diagnostic purposes in pathology: guideline from the college of American Pathologists Pathology and Laboratory Quality Center[J]. Archives of Pathology & Laboratory Medicine, 2013, 137(12): 1710-1722.
[27] MERINO A, PUIGVI L, BOLDU L, et al. Optimizing morphology through blood cell image analysis[J]. International Society for Laboratory Hematology ,2018, 40(Suppl 1): 54-61.
[28] 高飞,唐晶,李景岗,等.LDBC- Ⅰ全自动血细胞图像分析仪对外周血有核细胞分类能力的验证评价[J]. 现代检验医学杂志,2018,33(2):86-90. GAO Fei, TANG Jing, LI Jinggang, et al. Evaluation of LDBC-I blood cell image automatic analyzer in analysis of the nucleated cells in peripheral blood smear [J]. Journal of Modern Laboratory Medicine,2018,33(2): 86-90.
[29] KOCH S P R, THOMASEN I N, NIELSEN J ?, et al. Interchangeability of multiple Sysmex XN10 and XN20 modules for six types of leukocytes[J]. International Journal of Laboratory Hematology, 2022, 44(2): 273-280.
[30] VELIZAROVA M, YACHEVA T, GENOVA M, et al. Evaluation of automated hematology analyzer DYMIND DH76 compared to SYSMEX XN 1000 system[J]. Journal of Medical Biochemistry, 2021, 40(4): 367-377.
[31] 陈洁, 李文生, 张巍. 人工智能辅助系统在宫颈液基细胞学分析中的应用价值研究[J]. 现代检验医学杂志,2023,38(5):155-159. CHEN Jie, LI Wensheng, ZHANG Wei. Study on the value of artificial intelligence-assisted systems in cervical liquid-based cytology analysis[J]. Journal of Modern Laboratory Medicine, 2023, 38(5): 155-159.
[32] 黄骥斌,曾婷婷,郭曼英,等.CellaVision DM96自动化数字图像分析系统进行白细胞分类的临床应用[J]. 检验医学,2012,27(4):299-303. HUANG Jibin, ZENG Tingting, GUO Manying, et al. Clinical application of white blood cell differentiation of CellaVision DM96 system[J]. Laboratory Medicine,2012, 27(4): 299-303.
[33] 蒋浩琴, 陈葳, 何军, 等. 基于人工智能的血细胞形态分析仪白细胞分类性能的多中心研究[J]. 中华检验医学杂志,2023,46(3):265-273. JIANG Haoqin, CHEN Wei, HE Jun, et al. A multicenter study on evaluation of leukocyte differential performance by an artificial intelligence-based digital cell morphology analyzer[J]. Chinese Journal of Laboratory Medicine, 2023, 46(3): 265-273.
[34] 中国病理医师协会数字病理与人工智能病理学组,中华医学会病理学分会数字病理与人工智能工作委员会,中华医学会病理学分会细胞病理学组.宫颈液基细胞学的数字病理图像采集与图像质量控制中国专家共识[J].中华病理学杂志,2021,50(4):319-322. Expert Group of Digital Pathology and Artificial Intelligence Pathology of Chinese Association of Pathologists,Expert Group of Digital Pathology and Artificial Intelligence Pathology of Chinese Society of Pathology,Expert Group of Cytopathology of Chinese Society of Pathology. Chinese experts’ consensus on digital pathological image acquisition and quality control of cervical liquid based cytology [J]. Chinese Journal of Pathology, 2021, 50(4): 319-322.
[35] 姜梦琦,韩昱晨,傅小龙.基于人工智能的H-E 染色全切片病理学图像分析在肺癌研究中的进展[J].中国癌症杂志,2024,34(3):306-315. JIANG Mengqi, HAN Yuchen, FU Xiaolong. Research progress on H-E stained whole slide image analysis by artificial intelligence in lung cancer[J]. China Oncology,2024, 34(3): 306-315.
[36] 温冬梅, 张秀明, 王伟佳, 等. 临床实验室生化免疫自动审核系统的建立及应用[J]. 中华检验医学杂志,2018,41(2):141-148. WEN Dongmei, ZHANG Xiuming, WANG Weijia, et al. Establishment and application of the autoverification system in laboratory clinical chemistry and immunology laboratory[J]. Chinese Journal of Laboratory Medicine, 2018, 41(2): 141-148.
[37] 夏良裕,程歆琦,刘茜,等.临床实验室生化免疫项目自动审核程序的建立与应用[J].中华医学杂志,2017,97(8):616-621. XIA Liangyu, CHENG Xinqi, LIU Qian, et al. Developing and application of an autoverification system for clinical chemistry and immunology test results[J]. National Medical Journal of China, 2017,97(8): 616-621.
[38] 续薇,郝晓柯,崔巍,等.血液分析自动审核规则建立与验证的多中心研究[J]. 中华医学杂志,2018,41(8):601-607. XU Wei, HAO Xiaoke, CUI Wei, et al. A multicenter research on the establishment and validation of autoverification rules for blood analysis [J].Chinese Journal of Laboratory Medicine,2018, 41(8): 601-607.
[39] 胡月明, 李宾, 高光强, 等. 人工智能在检验医学中的应用及展望[J]. 国际检验医学杂志,2021,42(6):753-758. HU Yueming, LI Bin, GAO Guangqiang, et al. Application and prospect of artificial intelligence in laboratory medicine [J]. International Journal of Laboratory Medicine, 2021, 42(6): 753-758.
[40] MATEK C, SCHWARZ S, SPIEKERMANN K, et al. Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks[J]. Nature Machine Intelligence, 2019, 1(11): 538-544.
[41] MATEK C, KRAPPE S, M?NZENMAYER C, et al. Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set[J]. Blood, 2021, 138(20): 1917-1927.
[42] 杨军霞, 连荷清, 庞博. 人工智能血细胞形态学检查的关键技术进展[J]. 中华检验医学杂志,2023,46(3):326-330. YANG Junxia, LIAN Heqing, PANG Bo. Progress in key technologies of artificial intelligence-assisted blood cell morphology examination[J]. Chinese Journal of Laboratory Medicine, 2023, 46(3): 326-330.
[43] CANDIDO DOS REIS F J, WISHART G C, DICKS E M, et al. An updated PREDICT breast cancer prognostication and treatment benefit prediction model with independent validation[J]. Breast Cancer Research,2017, 19(1): 58.
[44] SAVULESCU J, GIUBILINI A, VANDERSLUIS R,et al. Ethics of artificial intelligence in medicine[J].Singapore Medical Journal, 2024, 65(3): 150-158.
[45] OBERMEYER Z, POWERS B, VOGELI C, et al.Dissecting racial bias in an algorithm used to manage the health of populations[J]. Science, 2019, 366(6464):447-453.
[46] PLOUG T, HOLM S. Going beyond the false dichotomy of broad or specific consent:a meta-perspective on participant choice in research using human tissue[J]. American Journal of Bioethics, 2015, 15(9): 44-46.
[47] KAYE J, WHITLEY E A, LUND D, et al. Dynamic consent: a patient interface for twenty-first century research networks[J]. European Journal of Human Genetics, 2015, 23(2): 141-146.
[48] PORSDAM MANN S, SAVULESCU J, RAVAUD P, et al. Blockchain, consent and prosent for medical research[J]. Journal of Medical Ethics, 2020, 47(4):244-250.

相似文献/References:

[1]杨 华a,孙天舒b,王 瑶c,等.人工智能辅助阅片与单纯人工阅片在女性阴道微生态系统形态学诊断中的比对研究[J].现代检验医学杂志,2023,38(01):169.[doi:10.3969/j.issn.1671-7414.2023.01.032]
 YANG Huaa,SUN Tian-shub,WANG Yaoc,et al.Comparative Study of Artificial Intelligence-assisted Analysis and Manual Visual Analysis in Gynecological Microbiome Diagnosis[J].Journal of Modern Laboratory Medicine,2023,38(01):169.[doi:10.3969/j.issn.1671-7414.2023.01.032]

备注/Memo

备注/Memo:
基金项目:陆军军医大学教育改革研究课题(项目编号:2022B08)。
作者简介:冯馨锐(1994-),女,硕士研究生,助教,研究方向:医学检验技术, E-mail:fengxr@tmmu.edu.cn。
通讯作者:毕清华(1992-),女,在职博士研究生,助教,研究方向:医学检验技术, E-mail:qinghua.bi@tmmu.edu.cn。
更新日期/Last Update: 2025-01-15