[1]李 红,张丽云,房秋霞.间充质干细胞来源的外泌体miR-3614-5p 通过抑制铁死亡改善模型大鼠先兆子痫进展的机制研究[J].现代检验医学杂志,2024,39(03):53-59.[doi:10.3969/j.issn.1671-7414.2024.03.009]
 LI Hong,ZHANG Liyun,FANG Qiuxia.Mechanism Study of Mesenchymal Stem Cell Derived Exosome miR-3614-5p to Improve the Progression of Preeclampsia in Model Rats by Inhibiting Iron Death[J].Journal of Modern Laboratory Medicine,2024,39(03):53-59.[doi:10.3969/j.issn.1671-7414.2024.03.009]
点击复制

间充质干细胞来源的外泌体miR-3614-5p 通过抑制铁死亡改善模型大鼠先兆子痫进展的机制研究()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第39卷
期数:
2024年03期
页码:
53-59
栏目:
论著
出版日期:
2024-05-15

文章信息/Info

Title:
Mechanism Study of Mesenchymal Stem Cell Derived Exosome miR-3614-5p to Improve the Progression of Preeclampsia in Model Rats by Inhibiting Iron Death
文章编号:
1671-7414(2024)03-053-07
作者:
李 红张丽云房秋霞
(唐山职业技术学院附属医院妇产科,河北唐山 063000)
Author(s):
LI Hong ZHANG Liyun FANG Qiuxia
(Department of Obstetrics and Gynecology, Affiliated Hospital of Tangshan Vocational and Technical College, Hebei Tangshan 063000,China)
关键词:
先兆子痫外泌体微小核糖核酸-3614-5p铁死亡
分类号:
R-332
DOI:
10.3969/j.issn.1671-7414.2024.03.009
文献标志码:
A
摘要:
目的 研究间充质干细胞来源外泌体微小核糖核酸-3614-5p(miR-3614-5p)对模型大鼠先兆子痫(preeclampsia,PE)进展的调节作用及相关机制。方法 将36 只SD 大鼠(24 只雌性和12 只雄性)以雌雄比例2 ∶ 1 合笼饲养自然受孕。24 只妊娠大鼠随机分为假手术组(sham 组)、PE 模型组(PE 组)和外泌体miR-3614-5p 组(PE+exo 组),每组8 只。PE 组通过皮下注射100 mg/kg 的NG- 硝基-L- 精氨酸甲酯建立大鼠PE 模型;PE+exo 组构建PE 模型,同时在第14 天腹腔注射160 μg/ml 的外泌体悬液(0.5 ml/ 只/ 天),连续6 天,实验持续21 天;sham 组则给予等量生理盐水。在妊娠第0,7,14 和21 天测量血压和尿蛋白浓度。RT-qPCR 检测miR-3614-5p 水平及B 细胞淋巴瘤病-2(Bcl-2)、Bcl 相关X 蛋白(Bax)的mRNA 水平;ELISA 检测Caspase-3 活性、活性氧(ROS)水平及丙二醛(MDA)、谷胱甘肽(GSH)和亚铁离子(Fe2+)含量;Western blot 检测谷胱甘肽过氧化物酶4(GPX4)和溶质载体家族7 成员11(SLC7A11)蛋白水平。结果 与sham组大鼠相比,PE组大鼠的胎盘组织(0.43±0.05 vs 1.01±0.07)和外周血(0.51±0.07vs 1.01±0.12)中miR-3614-5p 表达显著下调,差异具有统计学意义(t=19.070,10.180,均P<0.01)。与上清液相比,源自MSCs 的外泌体中miR-3614-5p 显著富集。与sham 组相比,PE 组大鼠第21 天的舒张压(175.43±6.02 mmHg vs113.26±5.11 mmHg)、收缩压(123.57±5.63 mmHg vs 82.63±5.26 mmHg)及尿蛋白含量(175.48±13.21 mg/ml vs67.65±5.76 mg/ml)显著升高(t=22.606,16.440,23.168, 均P<0.01);与PE 组相比,PE+exo 组舒张压(124.57±5.33mmHg vs 175.43±6.02 mmHg)、收缩压(89.76±3.88 mmHg vs 123.57±5.63 mmHg)及尿蛋白含量(97.69±7.23 mg/ml vs 175.48±13.21 mg/ml )显著降低,差异具有统计学意义(t=18.493,13.577,16.713, 均P<0.01)。与sham 组相比,PE 组大鼠胎盘组织中Caspase-3 活性(238.56%±13.22% vs 100.12%±5.93%)、Bax 水平(3.18±0.71 vs 1.01±0.11)、ROS 水平(387.65%±25.98% vs 100.51%±5.89%)、MDA 含量(33.21±3.17 nmol/mg vs 14.83±2.69 nmol/mg)和Fe2+浓度(38.77±6.53 nmol/ml vs 17.51±3.15 nmol/ml)显著升高,而Bcl-2 水平( 0.47±0.08 vs 1.01±0.12)、GSH 含量(4.12±1.22 nmol/mg vs 9.76±0.93 nmol/mg)、GPX4 蛋白(0.48±0.06 vs 1.01±0.24)和SLC7A11 蛋白(0.51±0.11vs 1.01±0.11) 水平则显著降低(t=6.459~32.863, 均P<0.01); 与PE 组相比,PE+exo 组胎盘组织中Caspase-3 活性(117.35%±8.67% vs 238.56%±13.22%)、Bax 水平(1.13±0.45 vs 3.18±0.71)、ROS 水平(128.73%±14.37% vs387.65%±25.98%)、MDA 含量(18.13±3.89 nmol/mg vs 33.21±3.17 nmol/mg)和Fe2+ 浓度(19.05±3.45 nmol/ml vs38.77±6.53 nmol/ml)显著降低,而Bcl-2 水平(1.04±0.11 vs 0.47±0.08),GSH 含量(7.86±1.07 nmol/mg vs 4.12±1.22nmol/mg),GPX4 蛋白(0.98±0.14 vs 0.48±0.06 )和SLC7A11 蛋白(1.11±0.09 vs 0.51±0.11)水平则显著升高,差异具有统计学意义(t=6.093~29.633,均P<0.01)。结论 miR-3614-5p 在PE 模型大鼠的胎盘组织和外周血中显著下调。MSCs 来源的外泌体miR-3614-5p 通过抑制铁死亡改善大鼠的PE 进展。MSCs 来源的外泌体miR-3614-5p 可能是PE 治疗的一个新的潜在的生物标志物。
Abstract:
Objective To investigate the regulatory effects of exosome microRNA-3614-5p (miR-3614-5p) derived from mesenchymal stem cells on the progression of preeclampsia (PE) in model rats and its related mechanisms. Methods Thirty-six SD rats (24 females and 12 males) were housed in cages at a female-to-male ratio of 2:1 for natural conception. Twenty-four pregnant rats were randomly divided into sham group (sham group), PE model group (PE group) and exosome miR-3614-5p group (PE+exo group), with 8 rats in each group. The PE model was established by subcutaneous injection of 100 mg/kg NG-nitro-L-arginine methyl ester in PE group. PE model was constructed in PE+exo group. Meanwhile, 160 μg/ml exosome suspension (0.5 ml/individual/day) was intraperitoneally injected on the 14th day for 6 consecutive days, and the experiment lasted for 21 days. Sham group was given an equal amount of normal saline. Blood pressure and urinary protein concentration were measured on days 0, 7, 14 and 21 of pregnancy. The levels of miR-3614-5p, B lymphoblastoma-2 (Bcl-2) and Bcl-associated X protein (Bax) mRNA were detected by RT-qPCR. The activity of Caspase-3, the levels of reactive oxygen species (ROS) and the content of malondialdehyde (MDA), glutathione (GSH) and ferrous ion (Fe2+) were detected by ELISA. Western blot was used to analyze the protein levels of the iron death-related protein glutathione peroxidase 4 (GPx4) and solute carrier family 7 member 11 (SLC7A11). Results Compared with the sham group, the expression of miR-3614-5p in the placental tissues (0.43±0.05 vs 1.01±0.07) and peripheral blood (0.51±0.07 vs 1.01±0.12) of rats in the PE group was downregulated, with significant differences (t=19.070, 10.180, all P<0.01). Compared with supernatant liquid phase, miR-3614-5p in exosomes derived from MSCs was enriched. Compared with sham group, the diastolic blood pressure (175.43±6.02 mmHg vs 113.26±5.11 mmHg), systolic blood pressure (123.57±5.63 mmHg vs 82.63±5.26 mmHg) and urinary protein content (175.48±13.21 mg/ml vs 67.65±5.76 mg/ml) of rats in PE group were increased on the 21st day with statistical significante between groups(t=22.606,16.440,23.168,all P<0.01).Compared with PE group, diastolic blood pressure (124.57±5.33 mmHg vs 175.43±6.02 mmHg), systolic blood pressure (89.76±3.88 mmHg vs 123.57±5.63 mmHg) and urinary protein content (97.69±7.23 mg/ml vs 175.48±13.21 mg/ml) in PE+exo group were decreased, and the differences between groups were significant (t=18.493,13.557,16.713, all P<0.01). Compared with sham group, Caspase-3 activity (238.56%±13.22% vs 100.12%±5.93%), Bax level (3.18±0.71 vs 1.01±0.11), ROS level (387.65%±25.98% vs 100.51%±5.89%), MDA content (33.21±3.17 nmol/mg vs 14.83±2.69 nmol/mg) and Fe2+ concentration (38.77±6.53 nmol/ml vs 17.51±3.15 nmol/ml) in placenta tissue of PE group were increased, while Bcl-2 level (0.47±0.08 vs 1.01±0.12), GSH content (4.12±1.22 nmol/mg vs 9.76±0.93 nmol/mg), GPX4 protein (0.48±0.06 vs 1.01±0.24) and SLC7A11 protein (0.51±0.11 vs 1.01±0.11) levels were decreased(t=6.459~32.863,all P<0.01);Caspase-3 activity (117.35%±8.67% vs 238.56%±13.22%), Bax level (1.13±0.45 vs 3.18±0.71), ROS level (128.73%±14.37% vs 387.65%±25.98% ), MDA content (18.13±3.89 nmol/mg vs 33.21±3.17 nmol/ mg ) and Fe2+ concentration (19.05±3.45 nmol/ml vs 38.77±6.53 nmol/ml) in placental tissues of PE+exo group were decreased, while Bcl-2 level (1.04±0.11 vs 0.47±0.08 ), GSH content (7.86±1.07 nmol/mg vs 4.12±1.22 nmol/mg), GPX4 protein (0.98±0.14 vs 0.48±0.06) and SLC7A11 protein (1.11±0.09 vs 0.51±0.11) levels were increased compared with PE group, with significant differences between groups (t=6.093~29.633,all P<0.01). Conclusion In the placental tissues and peripheral blood of PE rats, miR-3614-5p was down-regulated. Exosomes overexpressing miR-3614-5p derived from MSCs suppressed PE progression in rats by inhibiting ferroptosis. These results suggested that exosomes miR-3614-5p derived from MSCs may be a novel potential biomarker for PE treatment.

参考文献/References:

[1] TAYLOR E B, GEORGE E M. Animal models of preeclampsia: mechanistic insights and promising therapeutics[J]. Endocrinology, 2022, 163(8): bqac096.
[2] VATISH M, POWYS V R, CERDEIRA A S.Novel therapeutic and diagnostic approaches for preeclampsia[J]. Current Opinion in Nephrology and Hypertension, 2023, 32(2): 124-133.
[3] OVERTON E, TOBES D, LEE A. Preeclampsia diagnosis and management[J]. Best Practice & Research. Clinical Anaesthesiology, 2022, 36(1): 107-121.
[4] CHANG K J, SEOW K M, CHEN Kuohu. Preeclampsia: recent advances in predicting, preventing,and managing the maternal and fetal life-threatening condition[J]. International Journal of Environmental Research and Public Health, 2023, 20(4): 2994.
[5] 王维, 唐静, 杨永红, 等.妊娠期高血压疾病患者胎盘组织叶酸代谢基因MTR 的表达水平及其作用机制研究[J].现代检验医学杂志, 2022, 37(4): 134-138, 173. WANG Wei, TANG Jing, YANG Yonghong, et al. Expression level and effects of folate metabolismrelated gene MTR in placenta of patients with hypertensive disorder complicating pregnancy[J].Journal of Modern Laboratory Medicine, 2022, 37(4):134-138, 173.
[6] VYAS K S, KAUFMAN J, MUNAVALLI G S, et al. Exosomes: the latest in regenerative aesthetics[J].Regenerative Medicine, 2023, 18(2): 181-194.
[7] KRYLOVA S V, FENG Daorong. The machinery of exosomes: biogenesis, release, and uptake[J].International Journal of Molecular Sciences, 2023,24(2): 1337.
[8] 王路, 叶莎, 韩霞, 等.循环外泌体miRNA 检测对肝细胞癌临床诊断效能的Meta 分析[J].现代检验医学杂志, 2022, 37(4): 59-63. WANG Lu, YE Sha, HAN Xia, et al. Meta-analysis of the diagnostic value of circulating exosomes miRNA detection for hepatocellular carcinoma[J]. Journal of Modern Laboratory Medicine, 2022, 37(4): 59-63.
[9] MADHUMITA M, PAUL S. A review on methods for predicting miRNA-mRNA regulatory modules[J].Journal of Integrative Bioinformatics, 2022, 19(3):20200048.
[10] DIENER C, KELLER A, MEESE E. Emerging concepts of miRNA therapeutics: from cells to clinic[J].Trends in Genetics, 2022, 38(6): 613-626.
[11] BRANCACCIO M, GIACHINO C, IAZZETTA A M,et al. Integrated bioinformatics analysis reveals novel miRNA as biomarkers associated with preeclampsia[J].Genes, 2022, 13(10): 1781.
[12] JASZCZUK I, KOCZKODAJ D, KONDRACKA A, et al. The role of miRNA-210 in pre-eclampsia development[J]. Annals of Medicine, 2022, 54(1):1350-1356.
[13] TENG Lingling, LIU Pingping, SONG Xiao, et al. Long non-coding RNA nuclear-enriched abundant transcript 1 (NEAT1) represses proliferation of trophoblast cells in rats with preeclampsia via the microRNA-373/FLT1 axis[J]. Medical Science Monitor, 2020, 26: e927305.
[14] 靳杨, 姜利琼, 房烨, 等.结直肠癌患者血清外泌体与组织中KRAS,BRAF,NRAS 和PIK3CA 基因突变检测及临床意义的比较[J].现代检验医学杂志,2023, 38(1): 22-26. JIN Yang, JIANG Liqiong, FANG Ye, et al. Comparison of KRAS, BRAF, NRAS and PIK3CA gene mutations in serum exosomes and tissues of patients with colorectal cancer and their clinical significance[J].Journal of Modern Laboratory Medicine, 2023, 38(1):22-26.
[15] SELVAKUMAR S C, SEKAR D, PREETHI K A,et al. Theragnostic implications of exosomes in preeclampsia[J]. Hypertension Research, 2022, 45(1):178-180.
[16] MATSUBARA K, MATSUBARA Y, UCHIKURA Y, et al. Pathophysiology of preeclampsia: the role of exosomes[J]. International Journal of Molecular Sciences, 2021, 22(5): 2572.
[17] ALEXANDROVA M, MANCHOROVA D, DIMOVA T. Immunity at maternal-fetal interface: KIR/HLA (Allo) recognition[J]. Immunological Reviews, 2022, 308(1):55-76.
[18] BAI Kunfeng, LEE C L, LIU Xiaofeng, et al. Human placental exosomes induce maternal systemic immune tolerance by reprogramming circulating monocytes[J].Journal of Nanobiotechnology, 2022, 20(1): 86.
[19] GU Mengqi, ZHANG Fengyuan, JIANG Xiaotong,et al. Influence of placental exosomes from early onset preeclampsia women umbilical cord plasma on human umbilical vein endothelial cells[J]. Frontiers in Cardiovascular Medicine, 2022, 9: 1061340.
[20] JIANG Yan, LUO Ting, XIA Qiang, et al.MicroRNA-140-5p from human umbilical cord mesenchymal stem cells-released exosomes suppresses preeclampsia development[J]. Functional & Integrative Genomics,2022, 22(5): 813-824.
[21] SALEH M, COMPAGNO M, PIHL S, et al. Variation of complement protein levels in maternal plasma and umbilical cord blood during normal pregnancy: an observational study[J]. Journal of Clinical Medicine,2022, 11(13): 3611.
[22] PAN Haitao, SHI Xiaoliang, FANG Min, et al. Profiling of exosomal microRNAs expression in umbilical cord blood from normal and preeclampsia patients[J]. BMC Pregnancy and Childbirth, 2022, 22(1): 124.
[23] ZOU Gang, JI Qingfang, GENG Zixiang, et al. MiR-31-5p from placental and peripheral blood exosomes is a potential biomarker to diagnose preeclampsia[J].Hereditas, 2022, 159(1): 35.
[24] LIANG Deguang, MINIKES A M, JIANG Xuejun. Ferroptosis at the intersection of lipid metabolism and cellular signaling[J]. Molecular Cell, 2022, 82(12):2215-2227.
[25] NG S W, NORWITZ S G, NORWITZ E R. The impact of iron overload and ferroptosis on reproductive disorders in humans: implications for preeclampsia[J].International Journal of Molecular Sciences, 2019,20(13): 3283.
[26] YANG Nana, WANG Qianghua, DING Biao, et al. Expression profiles and functions of ferroptosis-related genes in the placental tissue samples of early- and lateonset preeclampsia patients[J]. BMC Pregnancy and Childbirth, 2022, 22(1): 87.
[27] DING Yuzhen, YANG Xiaofeng, HAN Xiaoxue, et al. Ferroptosis-related gene expression in the pathogenesis of preeclampsia[J]. Frontiers in Genetics, 2022, 13:927869.
[28] ZHANG Heng, HE Yue, WANG Jianxia, et al. MiR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia[J]. Redox Biology,2020, 29: 101402.
[29] WANG Yue, ZHENG Lixin, SHANG Wenjing, et al. Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer[J]. Cell Death and Differentiation, 2022, 29(11): 2190-2202.
[30 YANG Xiaofeng, DING Yuzhen, SUN Lu, et al. Ferritin light chain deficiency-induced ferroptosis is involved in preeclampsia pathophysiology by disturbing uterine spiral artery remodelling[J]. Redox Biology, 2022, 58:102555.
[31] CHEN Xin, LI Jingbo, KANG Rui, et al. Ferroptosis:machinery and regulation[J]. Autophagy, 2021, 17(9):2054-2081.
[32] EL-KHALIK S R A, IBRAHIM R R, GHAFAR M T A, et al. Novel insights into the SLC7A11-mediated ferroptosis signaling pathways in preeclampsia patients: identifying pannexin 1 and toll-like receptor 4 as innovative prospective diagnostic biomarkers[J].Journal of Assisted Reproduction and Genetics, 2022,39(5): 1115-1124.

相似文献/References:

[1]翁震,何杨.外泌体蛋白质组学分析在心血管疾病中应用的研究进展[J].现代检验医学杂志,2018,33(04):157.[doi:10.3969/j.issn.1671-7414.2018.04.044]
 WENG Zhen,HE Yang.Research Progress of Proteomic Analysis of Exosomes and Its Application in Cardiovascular Disease[J].Journal of Modern Laboratory Medicine,2018,33(03):157.[doi:10.3969/j.issn.1671-7414.2018.04.044]
[2]蒲双双,李金星.外泌体在疾病实验诊断和临床治疗中的研究进展[J].现代检验医学杂志,2018,33(04):160.[doi:10.3969/j.issn.1671-7414.2018.04.045]
 PU Shuang-shuang,LI Jin-xing.Research Progress of Exosome in the Laboratory Diagnosis and Clinic Treatment of Disease[J].Journal of Modern Laboratory Medicine,2018,33(03):160.[doi:10.3969/j.issn.1671-7414.2018.04.045]
[3]蒲双双.外泌体的提取、鉴定和保存方法研究进展[J].现代检验医学杂志,2018,33(05):157.[doi:10.3969/j.issn.1671-7414.2018.05.044]
 PU Shuang-shuang.Research Progress in Isolation,Identification and Preservation of Exosomes[J].Journal of Modern Laboratory Medicine,2018,33(03):157.[doi:10.3969/j.issn.1671-7414.2018.05.044]
[4]张翠平,陈婷婷,王成,等.儿童原发性肾病综合征患者尿液外泌体miR-23b-3p水平变化及其临床意义[J].现代检验医学杂志,2019,34(01):1.[doi:10.3969/j.issn.1671-7414.2019.01.001]
 ZHANG Cui-ping,CHEN Ting-ting,WANG Cheng,et al.Levels and Its Significance of Urinary Exosomal miR-23b-3p in Children with Nephrotic Syndrome[J].Journal of Modern Laboratory Medicine,2019,34(03):1.[doi:10.3969/j.issn.1671-7414.2019.01.001]
[5]张筱东,谢星星,李 佳,等.血清外泌体 miR-221 和 miR-378 水平检测在胃癌诊断中的应用研究[J].现代检验医学杂志,2020,35(06):52.[doi:doi:10.3969/j.issn.1671-7414.2020.06.013]
 ZHANG Xiao-dong,XIE Xing-xing,LI Jia,et al.Application Study of Serum Exosome miR-221 and miR-378 Detection in theDiagnosis of Gastric Cancer[J].Journal of Modern Laboratory Medicine,2020,35(03):52.[doi:doi:10.3969/j.issn.1671-7414.2020.06.013]
[6]夏艳艳,沈 瀚,许红攀,等.液体活检技术在肿瘤诊断中的最新研究进展[J].现代检验医学杂志,2021,36(03):157.[doi:10.3969/j.issn.1671-7414.2021.03.037]
 XIA Yan-yan,SHEN Han,XU Hong-pan,et al.Latest Research Progress of Liquid Biopsy in Tumor Diagnosis[J].Journal of Modern Laboratory Medicine,2021,36(03):157.[doi:10.3969/j.issn.1671-7414.2021.03.037]
[7]邰国梅,郭 京,王高仁.胸部放疗患者血浆外泌体中miR-7-5p与miR-17-5p的表达及临床意义[J].现代检验医学杂志,2021,36(04):35.[doi:10.3969/j.issn.1671-7414.2021.04.008]
 TAI Guo-mei,GUO Jing,WANG Gao-ren.Expression and Clinical Significance of miR-7-5p and miR-17-5p in PlasmaExosomes of Patients with Thoracic Radiotherapy[J].Journal of Modern Laboratory Medicine,2021,36(03):35.[doi:10.3969/j.issn.1671-7414.2021.04.008]
[8]刘先宁,汪 耀,潘士印,等.人角膜基质间充质干细胞外泌体的分离制备及鉴定[J].现代检验医学杂志,2021,36(05):114.[doi:10.3969/j.issn.1671-7414.2021.05.025]
 LIU Xian-ning,WANG Yao,PAN Shi-yin,et al.Isolation and Identification of Exosomes Derived from Human CornealStromal Mesenchymal Stem Cells[J].Journal of Modern Laboratory Medicine,2021,36(03):114.[doi:10.3969/j.issn.1671-7414.2021.05.025]
[9]黄德发,张文娟,陈 杰,等.三种方法提取血清外泌体的比较研究[J].现代检验医学杂志,2021,36(06):139.[doi:10.3969/j.issn.1671-7414.2021.06.030]
 HUANG De-fa,ZHANG Wen-juan,CHEN Jie,et al.Comparative Study on Three Methods for Extraction of Serum Exosomes[J].Journal of Modern Laboratory Medicine,2021,36(03):139.[doi:10.3969/j.issn.1671-7414.2021.06.030]
[10]王 路,叶 莎,韩 霞,等.循环外泌体miRNA 检测对肝细胞癌临床诊断效能的Meta 分析[J].现代检验医学杂志,2022,37(04):59.[doi:10.3969/j.issn.1671-7414.2021.04.012]
 WANG Lu,YE Sha,HAN Xia,et al.Meta-Analysis of the Diagnostic Value of Circulating Exosomes miRNA Detection for Hepatocellular Carcinoma[J].Journal of Modern Laboratory Medicine,2022,37(03):59.[doi:10.3969/j.issn.1671-7414.2021.04.012]

备注/Memo

备注/Memo:
基金项目:河北省卫生和计划生育委员会科研项目(编号20160880)。
作者简介:李红(1985-),女,河北唐山人,本科,主治医师,研究方向:妇产科常见病诊治,E-mail:vven555@163.com。
更新日期/Last Update: 2024-05-15