[1]吴永彬,李 凌.CRISPR/Cas系统在新型冠状病毒肺炎快速诊断中的应用[J].现代检验医学杂志,2022,37(03):1-5.[doi:10.3969/j.issn.1671-7414.2022.03.001]
 WU Yong-bin,LI Ling.Application of CRISPR/Cas Systems in the Rapid Diagnosis of Coronavirus Disease 2019[J].Journal of Modern Laboratory Medicine,2022,37(03):1-5.[doi:10.3969/j.issn.1671-7414.2022.03.001]
点击复制

CRISPR/Cas系统在新型冠状病毒肺炎快速诊断中的应用()
分享到:

《现代检验医学杂志》[ISSN:/CN:]

卷:
第37卷
期数:
2022年03期
页码:
1-5
栏目:
述 评
出版日期:
2022-05-15

文章信息/Info

Title:
Application of CRISPR/Cas Systems in the Rapid Diagnosis of Coronavirus Disease 2019
文章编号:
1671-7414(2022)03-001-05
作者:
吴永彬1李 凌2
(1. 广西壮族自治区南溪山医院检验科, 广西桂林 541002; 2. 南方医科大学基础医学院,广州 510515)
Author(s):
WU Yong-bin1LI Ling2
(1. Department of Laboratory Medicine, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guangxi Guilin 541002, China; 2. School of Basic Medicine, Southern Medical University, Guangzhou 510515, China)
关键词:
间隔的短回文重复序列及其相关蛋白系统新型冠状病毒新型冠状病毒肺炎快速诊断
分类号:
R373.1;R446
DOI:
10.3969/j.issn.1671-7414.2022.03.001
文献标志码:
A
摘要:
近年来,基于规律成簇间隔的短回文重复序列( clustered regularly interspaced short palindromic repeats, CRISPR)及其相关蛋白( CRISPR-associated protein, Cas)系统的新型分子诊断工具,为病原体的诊断开辟了新的机遇。该文将关注现有和正在研究的 CRISPR/Cas系统用于新型冠状病毒肺炎(coronavirus disease 2019, COVID-19)快速诊断的潜在能力,并重点探讨其在临床中的应用和面临的挑战。
Abstract:
In recent years, emerging molecular diagnostic tools based on clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) systems have opened up new opportunities for pathogen diagnosis. This article will focus on the potential capabilities of the existing and under-research CRISPR/Cas systems for rapid diagnosis of the coronavirus disease 2019 (COVID-19), and discuss their clinical applications and challenges.

参考文献/References:

[1] CHARPENTIER E, ELSHOLZ A, MARCHFELDER A. CRISPR-Cas: more than ten years and still full of mysteries[J]. RNA Biology, 2019, 16(4): 377-379.
[2] SAHEL D K, MITTAL A, CHITKARA D. CRISPR/ Cas system for genome editing: progress and prospects as a therapeutic tool[J]. The Journal of Pharmacology and Experimental Therapeutics, 2019, 370(3): 725-735.
[3] KOSTYUSHEVA A, BREZGIN S, BABIN Y, et al. CRISPR-Cas systems for diagnosing infectious diseases[J].Methods, 2021, 9: S1046-2023(21)00099-2.
[4] MYHRVOLD C, FREIJE C A, GOOTENBERG J S, et al. Field-deployable viral diagnostics using CRISPRCas13[ J]. Science, 2018, 360(6387): 444-448.
[5] LEUNG D W. Mechanisms of non-segmented negative sense RNA viral antagonism of host RIG-Ilike receptors[J]. Journal of Molecular Biology, 2019, 431(21): 4281-4289.
[6] HAN J, PEREZ J T, CHEN C, et al. Genome-wide CRISPR/Cas9 screen identifies host factors essential for influenza virus replication[J]. Cell Reports, 2018, 23(2): 596-607.
[7] SANCHE S, LIN YT, XU Chonggang, et al. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2[J]. Emerging Infectious Diseases, 2020, 26(7): 1470-1477.
[8] HE Changsheng, LIN Cailing, MO Guosheng, et al. Rapid and accurate detection of SARS-CoV-2 mutations using a Cas12a-based sensing platform [J]. Biosensors & Bioelectronics, 2022, 198: 113857.
[9] SAFARI F, ZARE K, NEGAHDARIPOUR M, et al. CRISPR Cpf1 proteins: structure, function and implications for genome editing[J]. Cell & Bioscience, 2019, 9: 36.
[10] MAKAROVA K S, WOLF Y I, IRANZO J, et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants[J]. Nature Reviews Microbiology, 2020, 18(2): 67-83.
[11] CAI Yupeng, CHEN Li, SUN Shi, et al. CRISPR/ Cas9-mediated deletion of large genomic fragments in soybean[J].International Journal of Molecular Sciences, 2018, 19(12): 3835.
[12] ZAYNAB M, CHEN Huirong, CHEN Yufei, et al. Signs of biofilm formation in the genome of Labrenzia sp. PO1[J]. Saudi Journal of Biological Sciences, 2021, 28(3): 1900-1912.
[13] BHARATHKUMAR N, SUNIL A, MEERA P, et al. CRISPR/Cas-Based modifications for therapeutic applications: a review[J]. Molecular Biotechnology, 2022, 64(4): 355-372.
[14] SHARMA A, BALDA S, APREJA M, et al. COVID-19 diagnosis: current and future techniques[J]. International Journal of Biological Macromolecules, 2021, 193(Pt B): 1835-1844.
[15] NEJAD Z, FATEMI F, RANAEI SIADAT S E. An outlook on coronavirus disease 2019 detection methods[J]. Journal of Pharmaceutical Analysis, 2021. doi: 10.1016/j.jpha.2021.11.003. Epub ahead of print. PMID: 34777894; PMCID: PMC8578030.
[16] LIANG Yuanbao, LIN Hongqing, ZOU Lirong, et al. CRISPR-Cas12a-Based detection for the major SARSCoV- 2 variants of concern[J]. Microbiology Spectrum, 2021, 9(3): e0101721.
[17] ARIZTI-SANZ J, BRADLEY A D, ZHANG Yibin, et al. Equipment-free detection of SARS-CoV-2 and variants of concern using Cas13[J].medRxiv, 2021. doi: 10.1101/2021.11.01.21265764. PMID: 34751276; PMCID: PMC8575147.
[18] LI Tianwen, ZHU Linwen, XIAO Bingxiu, et al. CRISPR-Cpf1-mediated genome editing and gene regulation in human cells[J]. Biotechnology Advances, 2019, 37(1): 21-27.
[19] WANG Jingyi, ZHANG Chenzi, FENG Bo. The rapidly advancing Class 2 CRISPR-Cas technologies: A customizable toolbox for molecular manipulations[J]. Journal of Cellular and Molecular Medicine, 2020, 24(6): 3256-3270.
[20] CHEN J S, MA E, HARRINGTON L B, et al. CRISPRCas12a target binding unleashes indiscriminate singlestranded DNase activity[J]. Science, 2018, 360(6387): 436-439.
[21] COX D B T, GOOTENBERG J S, ABUDAYYEH O O, et al. RNA editing with CRISPR-Cas13[J]. Science (New York, N.Y.), 2017, 358(6366): 1019-1027.
[22] AMAN R, MAHAS A, MAHFOUZ M. Nucleic acid detection using CRISPR/Cas biosensing technologies[J]. ACS Synthetic Biology, 2020, 9(6): 1226-1233.
[23] KAZLAUSKIENE M, KOSTIUK G, VENCLOVAS ?, et al. A cyclic oligonucleotide signaling pathway in type III CRISPRCassystems[J]. Science, 2017, 357(6351): 605-609.
[24] MUSTAFA M I, MAKHAWI A M. SHERLOCK and DETECTR: CRISPR-Cas systems as potential rapid diagnostic tools for emerging infectious diseases[J]. J Clin Microbiol,2021,59(3):e00745-20.
[25] KIM S, JI S, KOH H R. CRISPR as a diagnostic tool[J]. Biomolecules, 2021, 11(8): 1162.
[26] DARA M, TALEBZADEH M. CRISPR/Cas as a potential diagnosis technique for COVID-19[J]. Avicenna Journal of Medical Biotechnology, 2020, 12(3): 201-202.
[27] HOU Tieying, ZENG Weiqi, YANG Minling, et al. Development and evaluation of a rapid CRISPR-based diagnostic for COVID-19[J]. PLoS Pathogens, 2020, 16(8): e1008705.
[28] RAUCH J N, VALOIS E, SOLLEY S C, et al. A scalable, easy-to-Deploy protocol for Cas13-based detection of SARS-CoV-2 genetic material[J]. Journal of Clinical Microbiology, 2021, 59(4): e02402-20.
[29] PATCHSUNG M, JANTARUG K, PATTAMA A, et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA[J]. Nature Biomedical Engineering, 2020, 4(12): 1140-1149.
[30] YOSHIMI K, TAKESHITA K, YAMAYOSHI S, et al. Rapid and accurate detection of novel coronavirus SARS-CoV-2 using CRISPR-Cas3[J]. SSRN Electronic Journal, 2020. doi:10.2139/ssrn.3640844.
[31] ARIZTI-SANZ J, FREIJE C A, STANTON A C, et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2[J]. Nature Communications, 2020, 11(1): 5921.
[32] BROUGHTON J P, DENG Xianding, YU Guixia, et al. CRISPR-Cas12-based detection of SARS-CoV-2[J]. Nature Biotechnology, 2020, 38(7): 870-874.
[33] RAMACHANDRAN A, HUYKE D A, SHARMA E, et al. Electric field-driven microfluidics for rapid CRISPRbased diagnostics and its application to detection of SARS-CoV-2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(47): 29518-29525.
[34] JOUNG J, LADHA A, SAITO M, et al. Point-ofcare testing for COVID-19 using SHERLOCK diagnostics[J]. medRxiv [Preprint], 2020. doi: 10.1101/2020.05.04.20091231. PMID: 32511521; PMCID: PMC7273289.
[35] WANG Xinjie, ZHONG Mingtian, LIU Yong, et al. Rapid and sensitive detection of COVID-19 using CRISPR/Cas12a-based detection with naked eye readout, CRISPR/Cas12a-NER[J]. Science Bulletin (Beijing), 2020, 65(17): 1436-1439.
[36] HUANG Zhen, TIAN Di, LIU Yang, et al. Ultrasensitive and high-throughput CRISPR-p owered COVID-19 diagnosis[J]. Biosensors & Bioelectronics, 2020, 164: 112316.
[37] LIU T Y, KNOTT G J, SMOCK D C J,et al. Accelerated RNA detection using tandem CRISPR nucleases[J]. medRxiv,2021, 17(9):982-988..
[38] BROUGHTON J P, DENG Xianding, YU Guixia, et al. Rapid detection of 2019 novel coronavirus SARS-CoV-2 using a CRISPR-based DETECTR lateral flow assay[J].medRxiv[Preprint], 2020. doi: 10.1101/2020.03.06.20032334.
[39] BRANDSMA E, VERHAGEN H J M P, VAN DE LAAR T J W, et al. Rapid, sensitive, and specific severe acute respiratory syndrome coronavirus 2 detection: a multicenter comparison between standard quantitative reverse-transcriptase polymerase chain reaction and CRISPR-Based DETECTR[J]. The Journal of Infectious Diseases, 2021, 223(2): 206-213.
[40] METSKY H C, FREIJE C A, KOSOKOTHORODDSEN T S F , et al. CRISPR-based COVID-19 surveillance using a genomically-comprehensive machine learning approach[J]. bioRxiv, 2020. DOI:10.1101/2020.02.26.967026.
[41] UPPADA V, GOKARA M, RASINENI G K. Diagnosis and therapy with CRISPR advanced CRISPR based tools for point of care diagnostics and early therapies[J]. Gene, 2018, 656:22-29. .
[42] ZHANG Feng, ABUDAYYEH O O, GOOTENBERG J S. A protocol for detection of COVID-19 using CRISPR diagnostics[EB/OL]. submitted, 2020.https:// www.broadinstitute.org/files/publications/special/ COVID-19%20detection%20(updated).pdf.
[43] U S Food & Drug Administration(FDA). EUA200466: Sherlock CRISPR SARS-CoV-2 Kit[EB/ OL]. Sherlock BioSciences, Inc, 2020.https://www.fda. gov/media/137747/download.
[44] JOUNG Julia, LADHA A, SAITO M, et al. Detection of SARS-CoV-2 with SHERLOCK one-pot testing[J]. The New England Journal of Medicine, 2020, 383(15): 1492-1494.
[45] COFSKY J C, KARANDUR D, HUANG C J, et al. CRISPR-Cas12a exploits R-loop asymmetry to form double-strand breaks[J]. eLife, 2020, 9: e55143.
[46] MURUGAN K, SEETHARAM A S, SEVERIN A J, et al. CRISPR-Cas12a has widespread off-target and dsDNA-nicking effects[J]. The Journal of Biological Chemistry, 2020, 295(17): 5538-5553.
[47] SHI Yuyan, FU Xiaoyi, YIN Yao, et al. CRISPRCas12a system for biosensing and gene regulation[J]. Chemistry Asian Journal, 2021, 16(8): 857-867.
[48] XIE Haihua, GE Xianglian, YANG Fayu, et al. Highfidelity SaCas9 identified by directional screening in human cells[J]. PLoS Biology, 2020, 18(7): e3000747.
[49] KUPFERSCHMIDT K. Fast-spreading U.K. virus variant raises alarms[J]. Science (New York, N.Y.), 2021, 371(6524): 9-10.
[50] LI Qianqian, WU Jiajing, NIE Jianhui, et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity[J]. Cell, 2020, 182(5): 1284-1294, e9.
[51] YURKOVETSKIY L, WANG Xue, PASCAL K E, et al. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant[J]. Cell, 2020, 183(3):739-751, e8.

相似文献/References:

[1]童 伟,陈登奕,陈俊文,等.2019-nCoV 总抗体两种免疫学检测方法的应用评价[J].现代检验医学杂志,2020,35(02):80.[doi:10.3969/j.issn.1671-7414.2020.02.023]
 TONG Wei,CHEN Deng-yi,CHEN Jun-wen,et al.Application Evaluation of Two Immunological Detection Methodsof 2019-nCoV Specific Antibodies[J].Journal of Modern Laboratory Medicine,2020,35(03):80.[doi:10.3969/j.issn.1671-7414.2020.02.023]
[2]陈泽衍,马 雯,张立俊,等.荧光免疫层析法检测全血2019-nCoV IgM 和IgG 抗体在新型冠状病毒肺炎诊断中的应用[J].现代检验医学杂志,2020,35(03):84.[doi:10.3969/j.issn.1671-7414.2020.03.021]
 CHEN Ze-yan,MA Wen,ZHANG Li-jun,et al.Application of 2019-nCoV IgM and IgG Tests by Fluorescence Immunochromatography in the Diagnosis of 2019-nCoV Infections[J].Journal of Modern Laboratory Medicine,2020,35(03):84.[doi:10.3969/j.issn.1671-7414.2020.03.021]
[3]胡纪文,王恩运,阚丽娟,等.三种化学发光法检测新型冠状病毒(SARS-CoV-2)抗体试剂盒的临床应用评价[J].现代检验医学杂志,2020,35(04):100.[doi:10.3969/j.issn.1671-7414.2020.04.025]
 HU Ji-wen,WANG En-yun,KAN Li-juan,et al.Evaluation of Clinical Application of Three Chemiluminescence Detection Kits for Detection of Novel Coronavirus (SARS-CoV-2) Antibody[J].Journal of Modern Laboratory Medicine,2020,35(03):100.[doi:10.3969/j.issn.1671-7414.2020.04.025]
[4]朱旭阳,叶寒青,陈文亥,等.新型冠状病毒肺炎患者血清SARS-CoV-2 抗体的检测分析[J].现代检验医学杂志,2020,35(04):106.[doi:10.3969/j.issn.1671-7414.2020.04.026]
 ZHU Xu-yang,YE Han-qing,CHEN Wen-hai,et al.Preliminary Analysis of Serum Antibodies Against SARS-CoV-2 in Patient with Coronavirus Disease 2019[J].Journal of Modern Laboratory Medicine,2020,35(03):106.[doi:10.3969/j.issn.1671-7414.2020.04.026]
[5]张园,周泽奇,王志贤,等.新型冠状病毒核酸、抗原和抗体联合检测的临床价值讨论[J].现代检验医学杂志,2020,35(05):99.[doi:10.3969/j.issn.1671-7414.2020.05.025]
 ZHANG Yuan,ZHOU Ze-qi,WANG Zhi-xian,et al.Discussion on the Clinical Value of Combined Detection of SARS-CoV-2 Nucleic Acid,Antigen and Antibody[J].Journal of Modern Laboratory Medicine,2020,35(03):99.[doi:10.3969/j.issn.1671-7414.2020.05.025]
[6]陈赛,刘海艇,李铁,等.新型冠状病毒肺炎患者肝功能异常的相关临床分析[J].现代检验医学杂志,2020,35(05):103.[doi:10.3969/j.issn.1671-7414.2020.05.026]
 CHEN Sai,LIU Hai-ting,LI Tie,et al.Clinical Analysis of Abnormal Liver Function in Patients with New Coronavirus Pneumonia[J].Journal of Modern Laboratory Medicine,2020,35(03):103.[doi:10.3969/j.issn.1671-7414.2020.05.026]
[7]宗曾艳,熊丹,武薇,等.一种国产新型冠状病毒核酸检测试剂盒的性能验证[J].现代检验医学杂志,2020,35(05):113.[doi:10.3969/j.issn.1671-7414.2020.05.029]
 ZONG Zeng-yang,XIONG Dan,WU Wei,et al.Performance Evaluation of A Domestic New Coronavirus Detection Kit[J].Journal of Modern Laboratory Medicine,2020,35(03):113.[doi:10.3969/j.issn.1671-7414.2020.05.029]
[8]宁明哲,陶 月,陈雨欣,等.新型冠状病毒血清特异性抗体检测的假性问题分析和对策探讨[J].现代检验医学杂志,2020,35(06):129.[doi:doi:10.3969/j.issn.1671-7414.2020.06.031]
 NING Ming-zhe,TAO Yue,CHEN Yu-xin,et al.SARS-CoV-2 Serological Antibody Testing: Problems of FalseDetections and the Solutions[J].Journal of Modern Laboratory Medicine,2020,35(03):129.[doi:doi:10.3969/j.issn.1671-7414.2020.06.031]
[9]孟凡萍,郝 坡.新型冠状病毒肺炎患者外周血淋巴细胞亚群的分析研究[J].现代检验医学杂志,2021,36(02):114.[doi:doi:10.3969/j.issn.1671-7414.2021.02.027]
 MENG Fan-ping,HAO Po.Analysis of Peripheral Blood Lymphocyte Subsets in Patients with Novel Coronavirus Pneumonia[J].Journal of Modern Laboratory Medicine,2021,36(03):114.[doi:doi:10.3969/j.issn.1671-7414.2021.02.027]
[10]王 丹,于海立,张露方,等.国产新型冠状病毒抗体胶体金法检测试剂盒在低流行区应用的诊断效果评价[J].现代检验医学杂志,2021,36(03):103.[doi:10.3969/j.issn.1671-7414.2021.03.024]
 WANG Dan,YU Hai-li,ZHANG Lu-fang,et al.Evaluation of Two Different Domestic Colloidal Gold Assay Kit forNew Coronavirus Antibody in Low Endemic Areas[J].Journal of Modern Laboratory Medicine,2021,36(03):103.[doi:10.3969/j.issn.1671-7414.2021.03.024]

备注/Memo

备注/Memo:
基金项目:广西临床重点专科建设项目(202015)。
作者简介: 吴永彬(1984-),男,硕士研究生,副主任技师,主要从事病原微生物的致病分子机制及其诊断方法的研究,E-mial:yongbinwu@163.com。
更新日期/Last Update: 1900-01-01